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Abstract. We review the foundations of twistor theory, with the aim

of expressing the Penrose integral transforms in the language of sheaf

cohomology. The key vocabulary of sheaves and fibre bundles is developed

in detail, enabling a formal discussion of gauge theories. We present a

rigorous analysis of spinor notation and formulate the zero-rest-mass free

field equations. Proofs of the Penrose and Penrose-Ward transformations

are sketched and physically relevant examples are calculated explicitly.
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1 Introduction

“Le plus court chemin entre deux vérités dans le domaine réel passe

par le domaine complexe.” —Jacques Hadamard

In the forty years since its inception, twistor theory has found applications in

many areas of mathematics. Early research centred around its potential as a

quantum theory of spacetime. Yet despite major progress, twistors are yet to

have a major impact on fundamental physics. Indeed twistor techniques and

their generalizations have had much greater success in integrable systems and

differential geometry.

Twistor transforms are perhaps the most potent tool provided by the twistor

programme. The simplest are integral transforms which enable the automatic

solution of classes of equations. The original Penrose transform has this form,

solving zero rest mass field equations on Minkowski space. More advanced

twistor transforms relate fields to vector bundles. These yield new perspectives

on gauge theory, instantons and monopoles.

To fully appreciate the power of the twistor transform requires some consid-

erable machinery. We must study sheaf cohomology and fibre bundles, familiar

to algebraic geometers. We need spinor notation and field theory employed by

theoretical physicists. Finally we should follow the pioneering Penrose into the

world of twistor geometry.

These daunting prerequisites obscure our goal. Therefore it is pedagogically

important to compute a few simple examples before we set off. The reader

should refer back to these for motivation in the mathematically denser sections

of the text.

1.1 Motivational Examples

Consider a flat 4-dimensional manifold M with metric η of definite signature.

The wave equation for a scalar field ϕ takes the form

ηµν∂µ∂νϕ = 0

We aim to solve this equation in neutral signature and Lorentzian signature

using an integral transform technique, somewhat like a Fourier tranform.

We start with the neutral signature case, which can be solved by a John

transform as follows. Let T = R3 and f : R3 −→ R be an arbitrary smooth

function. Let M be the space of oriented lines in T , with typical element

`(u,v) = {v + tu : t ∈ R}
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for some |u| = 1 with u,v ∈ R3. Consider the tangent bundle of the 2-sphere

TS2 = {(u,v) ∈ R3 × R3 : |u| = 1 and (u,v) = 0}

where (u,v) denotes the Euclidean inner product. Define a bijection

M −→ TS2

`(u,v) 7−→ (u,v − (v,u)u)

where the second component is the point on `(u,v) closest to the origin. Hence

we may locally identify M with R4.

Choose local coordinates (t, x, y, z) for M , writing

` = {(t+ sy, x+ sz, s) : s ∈ R}

These parameterize all lines which do not lie in planes of constant x3. Now

define a function ϕ on M by

ϕ(`) =

∫
`

f

which reads in coordinates

ϕ(t, x, y, z) =

∫ ∞
−∞

f(t+ sy, x+ sz, s)ds

Now there are 4 parameters and f is defined on R3 so we expect a condition on

ϕ. Differentiating under the integral sign we obtain the wave equation

∂2ϕ

∂t∂z
− ∂2ϕ

∂x∂y
= 0

It is natural to ask whether this construction can be inverted. Indeed John [25]

showed that every solution of the wave equation can be obtained from some f .

This preliminary example demonstrates a defining philosophy of twistor the-

ory. Namely, an unconstrained function on ‘twistor space’ T yields the solution

to a differential equation on ‘Minkowski space’ M , via an integral transform. We

also have a simple geometrical correspondence, another characteristic feature of

twistor methods. Specifically we see

T ←→M

{point in T} −→ {oriented lines through point}

{line in T} ←− {point in M}

For the Lorentzian signature case we employ the Penrose transform. Let
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T = P3 and f : P3 −→ C be holomorphic except for finitely many poles on any

restriction to P1 ⊂ P3. Let M be Minkowski space, with coordinate (t, x, y, z)

and define a function ϕ on M by

ϕ(t, x, y, z) =
1

2πi

∮
Γ

f(−(t+ ix) + λ(z − y), (z + y) + λ(−t+ ix), λ)dλ

where Γ is any closed contour in P1 which avoids the poles of f . Again we

expect one condition on ϕ and differentiating under the integral gives the wave

equation
∂2ϕ

∂t2
− ∂2ϕ

∂x2 −
∂2ϕ

∂y2 −
∂2ϕ

∂z2 = 0

The Penrose transform is more sophiscated than the John transform, since it

involves contour integration over a complex space. In particular, note that

we may change the contour Γ or add a holomorphic function to f without

changing ϕ. Thus to define an inverse transform we need to consider equivalence

classes of functions and contours. Mathematically these are described by sheaf

cohomology, which is the subject of §2.

Be warned that our notation in this section was deliberately imprecise. The

knowledgeable reader will notice that we have failed to distinguish between

twistor space and its projectivisation. In §5 and §6 we shall reformulate our

language rigorously. For the purposes of these examples, the notation abuse is

warranted to maintain transparency.

1.2 Outline

This review is split into three sections. In §2 and §3 we introduce the pure math-

ematical background underpinning the field. These topics may appear esoteric

at first, but are of vital importance to modern mathematics far beyond twistor

theory. We also precisely formulate the notion of a gauge theory, explaining

oft-quoted results in a natural way.

The material in §4 and §5 is of a different flavour. Here we introduce no-

tational conventions ubiquitous in twistor theory, but perhaps lesser known

outside the field. We study twistors from several different perspectives, leav-

ing the most formal arguments until last. The interplay between geometry and

physics guides our journey through the twistor landscape.

Finally we amalgamate all our earlier ideas in §6. We meet twistor transforms

in several related incarnations, observing how they solve physically important

equations. This section is less detailed and more fast-paced than the main body

of the text, and is intended to whet the reader’s appetite for a serious study of

relevant papers.
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We have adopted a formal style, more familiar to pure mathematicians than

theoretical physicists. This distinguishes our review from other treatments of

the subject. We hope that the added clarity and rigour of our work will en-

able readers to swiftly develop a deep understanding of the central concepts.

A healthy portion of examples and remarks is provided throughout the text,

helping to maintain intuitive appeal.

We use the following notation throughout

η = Minkowski metric, signature +−−−

M = Minkowski space R4 equipped with metric η

CM = MI = complexified Minkowski space C4

M c = conformally compactified Minkowski space

CM c = M = complexified conformally compactified Minkowski space

T = twistor space C4 equipped with Hermitian form Σ

PT = P = projective twistor space P3

1.3 Principal References

I am primarily indebted Huggett and Tod [21], Ward and Wells [39] and Duna-

jski [9] whose books introduced me to the subject. Much of the material herein

is based on arguments found in these volumes. Where appropriate I have added

detail, or modified arguments to suit my purposes. I rarely cite these works

explicitly, so I must give full credit to the authors now.

My greatest intellectual homage must be to Sir Roger Penrose. Without

his imagination this beautiful branch of mathematics may have remained an

unknown unknown. It is no surprise that his papers occupy almost one-sixth of

the bibliography! I was fortunate enough to hear him speak to the Archimideans

in February 2013 which particularly inspired me to include Example 4.37.

Finally I am extremely grateful to my supervisor, Dr. Maciej Dunajski,

for the advice and encouragement I have received over the past few months.

Striking out into the jungle of research mathematics is both exhilarating and

terrifying. His guidance has enabled me to maximise the former and minimise

the latter.
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2 Sheaf Theory

We saw in §1.1 that the process of inverting a twistor transform is nontrivial

in general. There is a degeneracy, or gauge freedom, in the choice of twistor

function. Eastwood et al. [10] articulated the correct viewpoint. We should view

the twistor transform in terms of the cohomology classes of certain sheaves. To

make this precise we must first introduce the mathematical formalism of sheaf

theory.

In this section we encounter the basic definitions in two different guises. First

we examine the abstract language preferred by modern algebraic geometers.

We connect this to the geometric picture given by étalé spaces, which is more

commonly used in twistor theory. We omit the proofs of equivalence, for they

amount to no more than definition chasing. We conclude with a thorough

exposition of elementary sheaf cohomology, including intuitive motivations and

examples often lacking in terser reviews.

Pure mathematicians should regard this section merely as a useful reference,

and may freely skip it on a first reading. Theoretical physicists might also wish

to defer a detailed study of the material. A full understanding is not essential

until §6.

2.1 Basic Definitions

Definition 2.1. Let X be a topological space. An abelian presheaf F on X

consists of

1. ∀ open U ⊂ X an abelian group F(U)

2. if V ⊂ U open subsets of X a restriction homomorphism

ρV : F(U) −→ F(V ), s 7−→ s|V

subject to the conditions

1. F(∅) = ∅

2. ∀ open U , F(U) −→ F(U) the identity homomorphism

3. W ⊂ V ⊂ U then the following diagram of restriction maps commutes

F(U) F(V )

F(W )
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An element s ∈ F(U) is called a section of F over U . s ∈ F(X) is called a

global section.

Definition 2.2. A presheaf is called a sheaf iff ∀ open U ⊂ X if U =
⋃
Ui open

cover and we are given si ∈ F(Ui) with si|Ui∪Uj
= sj |Ui∪Uj

then ∃ a unique

s ∈ F(U) such that s|Ui
= si ∀ i.

Remark 2.3. One can intuitively view a sheaf as a democratic presheaf; that is,

a presheaf on which global data is completely determined by local data.

Example 2.4. Let X be a complex manifold. Define sheaves O, O∗, Λp and Z

O(U) = {holomorphic s : U −→ C under addition}

O∗(U) = {nonzero holomorphic s : U −→ C under multiplication}

Λp(U) = {differential p-forms on U under addition}

Z(U) = {constant s : U −→ Z under addition}

Definition 2.5. The stalk of a presheaf at x ∈ X is defined to be the group

Fx = {(U, s) : U 3 x, s ∈ F(U)}/ ∼

where (U, s) ∼ (V, t) iff ∃ W ⊂ U ∩V , W 3 x such that s|W = t|W . An element

of Fx is called a germ. We denote a germ at x by [U, s] or [s, x].

Remark 2.6. The stalk encodes the behaviour of sections in an infinitesimal

region around x.

Example 2.7. Let O be the sheaf of holomorphic functions on C. Then the stalk

at x is the ring of power series convergent in some neighbourhood of x.

Definition 2.8. A presheaf G is a subpresheaf of F if G(U) is a subgroup of

F(U) for all U and the restriction maps of G are induced from those of F .

Definition 2.9. Let F and G be presheaves on X. A morphism ϕ : F −→ G
is a collection of homomorphisms ϕU : F(U) −→ G(U) for all U ⊂ X open,

such that whenever V ⊂ U we have ρV ◦ ϕU = ϕV ◦ ρU . An isomorphism is a

morphism with a two-sided inverse.

Remark 2.10. Observe that ϕ induces a homomorphism ϕx : Fx −→ Gx on

stalks, explicitly given by ϕx : [U, s] 7−→ [U,ϕU (s)].

Definition 2.11. Let ϕ : F −→ G be a morphism of presheaves. The presheaf

kernel of ϕ is defined by

kerpre(ϕ)(U) = ker(ϕU )
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The presheaf image of ϕ is defined by

impre(ϕ)(U) = im(ϕU )

Clearly these are subpresheaves of F and G respectively.

Lemma 2.12. Let ϕ : F −→ G be a morphism of sheaves. Then kerpre(ϕ) is a

sheaf.

Proof. Let U ⊂ X with U =
⋃
i Ui and si ∈ kerpre(ϕ)(Ui). Suppose also that

si|Ui∩Uj
= sj |Ui∩Ui

. Since F a sheaf there certainly exists s ∈ F(U) such

that s|Ui
= si. Now note that ϕ(s)|Ui

= ϕ(s|Ui
) = ϕ(si) = 0 by definition

of morphism. Since G is a sheaf also, we must have ϕ(s) = 0, whence s ∈
kerpre(ϕ)(U).

Remark 2.13. Note that impre(ϕ) is not a sheaf in general. Indeed let p 6= q ∈ R
and define a sheaf G on R by

G(U) =


Z⊕ Z if {p, q} ⊂ U

Z if p ∈ U and q /∈ U
Z if p /∈ U and q ∈ U
0 otherwise

Let F be the constant sheaf Z. Define a natural morphism ϕ : F −→ G by

ϕU =


diagonal if {p, q} ⊂ U
identity if p ∈ U and q /∈ U
identity if p /∈ U and q ∈ U

zero otherwise

Now take X = U1 ∪ U2 with p ∈ U1, q /∈ U1 and p /∈ U2, q ∈ U2. Choose

s1 ∈ G(U1) to have s1(x) = a ∈ Z and s2 ∈ G(U2) to have s2(x) = b 6= a ∈ Z.

Since p, q /∈ U1 ∩ U2 we see that s1 and s2 automatically agree on the overlap.

Now defining s ∈ G(X) by s(x) = (a, b) we see that s|U1
= s1 and s|U2

= s2. It

is now clear that s /∈ impre(ϕ)(X).

This motivates the following definition, which might seem somewhat arcane

at first glance.

Definition 2.14. Let F be a presheaf on X. The associated sheaf F+ on X

is the set of functions s : U −→
⊔
x∈U Fx such that

1. For all x ∈ U , s(x) ∈ Fx.

2. For all x ∈ U , there exists W 3 x with W ⊂ U and an element t ∈ F(W )

such that for all y ∈W , s(y) = [W, t].
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Remark 2.15. In fact, this is a very concrete construction. The procedure first

identifies the sections of F which have the same restriction, and then adds in

all sections which can be patched together.

Definition 2.16. Let ϕ : F −→ G be a morphism of sheaves. The kernel of ϕ

is defined by

ker(ϕ) = kerpre(ϕ)

The image of ϕ is defined by

im(ϕ) = (impre(ϕ))+

We say that ϕ is injective if ker(ϕ) = 0 and surjective if im(ϕ) = G.

Definition 2.17. Let G be a subsheaf of F . The quotient sheaf F/G is the

sheaf associated to the presheaf (F/G)pre(U) = F(U)/G(U).

2.2 Etalé Spaces

Definition 2.18. We define the étalé space of a presheaf F on X to be the

set FX =
⊔
x∈X Fx. There is a natural projection map π : FX −→ X taking

(U, s) ∈ Fx to x. For each open U ⊂ X and section s ∈ F(U) we define an

associated map s̄ : U −→ FX by x 7−→ sx, the germ of s at x. Clearly

π ◦ s̄ = id so s̄ is a section of π in the sense of Definition 3.4. We endow

FX with the largest topology such that the associated maps s̄ are continuous

∀ s ∈ F(U), ∀ open U ⊂ X.

Lemma 2.19. F is a sheaf over X iff for each open U ⊂ X every continuous

section of π over U is the associated map for some s ∈ F(U).

Remark 2.20. We therefore immediately note that the set of continuous sections

of a fibre bundle is automatically a sheaf over the base space. Such sheaves play

a vital role in §6.

Remark 2.21. We may now articulate a more geometrical definition of the as-

sociated sheaf. The sheaf associated to a presheaf F is given by the sheaf of

continuous sections of its étalé space FX.

Lemma 2.22. Let F and G be sheaves on X. A morphism of sheaves is equiv-

alently a continuous map ϕ : FX −→ GX which preserves fibres and is a group

homomorphism on each fibre.

Lemma 2.23. Let F and G be sheaves over X, and ϕ : FX −→ GX be a sheaf
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morphism. Then we may identify the kernel and image of ϕ as

ker(ϕ) = {s ∈ F : ϕ(s) = 0 ∈ Gx if s ∈ Fx}

im(ϕ) = {t ∈ G : t = ϕ(s) for some s ∈ F}

Definition 2.24. A sequence of maps between spaces

G0
f0−→ G1

f1−→ G2
f2−→ . . .

is called exact if im(fi) = ker(fi+1) ∀ i ≥ 0.

Theorem 2.25. A sequence of sheaves over X and sheaf morphisms is exact

iff the corresponding sequence of stalks and group homomorphisms is exact at

all x ∈ X.

Proof. Immediate from the étalé space perspective.

Remark 2.26. Invoking this lemma is a convenient way to prove exactness for

sequences of sheaves. We find it extremely useful in §6.

Example 2.27 (The Exponential Sheaf Sequence). We define a short exact se-

quence of sheaves on a complex manifold X by

0→ Z i−→ O e−→ O∗ → 0

where i is the inclusion map and e is defined by

eU (f) = exp(2πif) for f ∈ O(U)

The only nontrivial part of exactness is the surjectivity of e. It suffices to verify

this on stalks. Let [g, z] be the germ of a nonzero holomorphic function at z.

Choose some simply connected neighbourhood U 3 z on which g 6= 0. Then we

may define a holomorphic branch of log(g) on U by fixing z0 ∈ U and setting

log(g)(z) = log(g(z0)) +

∫ z

z0

dg

g

Now choosing f = 1
2πi log(g) we see that ex([f, z]) = [g, z] as required. It is

interesting to ask whether the sequence of global sections

0→ Z(X)
i−→ O(X)

e−→ O∗(X)→ 0

is exact. Once again the surjectivity of e is the only problem. To analyse

the obstruction to the sequence being exact we must introduce the methods of

cohomology theory.
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2.3 Čech Cohomology

Definition 2.28. Let X be a topological space U = (Ui)i∈I an open covering

with I some fixed, well-ordered index set. Let F be an abelian sheaf on X. For

any finite set i0, . . . ip ∈ I we denote Ui0 ∩ · · · ∩ Uip = Ui0,...ip . For p ≥ 0 we

define the pth cochain group of F with respect to U by

Cp(U ,F) =
∏

i0<···<ip

F(Ui0,...ip)

An element of the cochain group is called a cochain and comprises a collection

of sections αi0,...ip ∈ F(Ui0,...ip) for every ordered (p+ 1)-tuple of elements of I.

We define the coboundary map d : Cp −→ Cp+1 by

(dα)i0,...ip+1
=

p+1∑
k=0

(−1)kρi0,...ip+1
αi0,...îk,...ip+1

where the hat symbol denotes the omission of an index, and ρ denotes restriction.

It is clear that d2 = 0 so (C•, d) defines a complex of abelian groups, called the

Čech complex. We define the p-th cocycle group and the p-th coboundary

group by

Zp = ker(d : Cp −→ Cp+1)

Bp = im(d : Cp−1 −→ Cp)

with elements called cocycles and coboundaries respectively. The p-th co-

homology group measures the failure of the sequence defined by d to be exact

at Cp, and is explicitly

Hp(U ,F) = Zp/Bp

Remark 2.29. Thus far our construction has depended upon the choice of open

cover U for X. We pass to a covering independent notion via the method of

Morrow and Kodaira [26, §2.2], introducing refinements. One can make a more

direct definition, using the derived functor approach of Hartshorne [17, §III.2].

However, this approach is esoteric and practically useless for calculations, so we

avoid it.

Remark 2.30. Intuitively we can view sheaf cohomology as a measure of how

many more sections we obtain as we focus more locally on the base space. In this

sense sheaf cohomology is a quantitative approach to determining obstructions

to patching sections together.

Example 2.31. Following Ward and Wells [39, p. 176], we note without proof

that the cohomology of a constant sheaf F on a topological space X coincides
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with the ordinary cohomology of X with coefficients in F. Henceforth we freely

quote results from algebraic topology in connection with this observation.

Example 2.32 (The Mittag Leffler Problem). Following Griffiths and Harris [16,

p. 34] we briefly examine a motivational application of Čech cohomology. Sup-

pose we are a discrete set of points {pj} ⊂ C and asked to define a function f

on C holomorphic on C \ {pj} and with a pole of order mj at each pj . This

is obviously trivial in any compact subset U of C, since U necessarily contains

only finitely many of the {pj} so we define

fU (z) =
∏
pj∈U

(z − pj)
−mj

Globally, however, this process might not converge. We can nevertheless prove

that the construction is possible by appealing to cohomology. Let {Ui} be an

open cover of C with each Ui containing at most one of the pj . Let fi be a

meromorphic function solving the problem in Ui, and define fij = fi − fj on

Uij . On Uijk we automatically have fij + fjk + fki = 0, so

{fij} ∈ Z
1({Ui},O)

Now solving the problem globally is equivalent to finding gi ∈ O(Ui) such that

fij = gj − gi on Uij . Indeed suppose we had such gi. Defining hi = gi + fi ∈
O(Ui) we see that hi solves the problem locally. Moreover hi − hj = 0 on Uij

so the hi extend globally. The converse is similarly trivial. Now

{fij : fij = gj − gi} = B1({Ui},O)

Hence the obstruction to solving the problem is measured by H1({Ui},O). We

see shortly that H1(C,O) = 0 since C is a Stein manifold. Therefore the Mittag-

Leffler problem can be solved.

Lemma 2.33. H0(U ,F) = F(X), the set of global sections.

Proof. H0 is the kernel of d0, which is precisely the group of all local sections si

which agree on intersections. But by the definition of a sheaf, this is isomorphic

to the group of global sections of F .

Definition 2.34. An open covering V = {Vj}j∈J of X is refinement of U =

{Ui}i∈I if there is a map r : J −→ I such that

Vj ⊂ Ur(j) ∀ j ∈ J

11



The induced map on cochains R : Cp(U ,F) −→ Cp(V,F) is defined by

R(si0,...ip) = ρi0,...ipsr(i0),...r(ip)

Lemma 2.35. R and d commute, so R defines a homomorphism Hp(U ,F) −→
Hp(V,F).

Proof. This is simply a tedious exercise in notation, so we omit it.

Lemma 2.36. The homomorphism R : Hp(U ,F) −→ Hp(V,F) depends only

on U and V not on the choice of map r.

Proof. We refer the interested reader to Morrow and Kodaira [26, p. 32].

Definition 2.37. Let F be a sheaf on a space X. Then the pth cohomology

group is defined by

Hp(X,F) =
⊔
U
Hp(U ,F)/ ∼

where the disjoint union is taken over all covers of X, and two elements s ∈
Hp(U ,F) and t ∈ Hp(U ′,F) are equivalent if there exists a common refinement

V such that R(s) = R′(t).

Remark 2.38. The process of refinement is obviously unsatisfying from a calcu-

lational perspective. However for a fixed sheaf F on a fixed space X there may

exist a Leray cover U such that Hp(U ,F) = Hp(X,F) ∀ p ≥ 0. We can then

work with this fixed cover for all computations. For our purposes such a cover

always exists, as the following results guarantee.

Theorem 2.39 (Leray). U is a Leray cover for (X,F) if Hq(Ui0,...ip ,F) = 0

for all q > 0 and all ordered sets i0 < · · · < ip.

Proof. We refer the interested reader to Field [12, p. 109].

Remark 2.40. The subsets of X on which cohomology is required to vanish for U
to be Leray may be small relative to the global extent of X. We can regard these

subsets as cohomologically trivial building blocks, from which we construct the

global cohomology theory. This is analogous to the use of cell complexes in

algebraic topology, see Ward and Wells [39, p. 162].

Theorem 2.41 (Cartan’s Theorem B). Let F be a coherent analytic sheaf on

a Stein manifold M. Then Hp(M,F) = 0 for all p > 0.

Proof. We refer the ambitious reader to Forstnerič [14, p. 52].
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Remark 2.42. We have deliberately avoided providing rigorous definitions for the

terms used in the previous theorem. Without a deep understanding of algebraic

geometry the definitions would merely seem sterile and abstract. Instead we

quote some examples of Stein manifolds and coherent analytic sheaves which

will suffice for this essay.

Behnke and Stein [5] showed that any connected non-compact one-dimensional

complex manifold is Stein. In particular if {Ui} is an open cover of a connected

Riemann surface then every Ui is automatically Stein. It is well-known that

the sheaf of holomorphic sections of a holomorphic vector bundle is a coherent

analytic sheaf.

Example 2.43 (Cohomology of O on P1). Following Dunajski [9, p. 303] we

claim that all holomorphic functions on P1 are constant. Let f ∈ O(P1). Then

|f | has a maximum since P1 compact. Let U be open and connected in P1 and

ϕ : U −→ V ⊂ C a coordinate chart. Then f ◦ϕ−1 is a function on a connected

open subset of C whose modulus has a maximum, so f ◦ϕ−1 is constant by the

maximum modulus theorem, whence f is constant. So H0(P1,O) = C.

To compute H1(P1,O) it suffices to use Čech cohomology with the usual

open cover Ui = {[z0 : z1] | zi 6= 0}, by the previous remark. Choose a cocycle

f01 ∈ Z1({Ui},O), and let z = z0/z1 be a coordinate on U0. Note that z−1 is a

coordinate on U1. Since U01 is an annulus we may Laurent expand f01 about 0

to obtain

f01(z) =

∞∑
n=0

anz
n −

∞∑
n=1

bnz
−n

We therefore define

f0(z) =

∞∑
n=0

anz
n ∈ O(U0)

f1(z) =

∞∑
n=1

bnz
−n ∈ O(U1)

so that f01 = f0 − f1 on U01 whence f01 ∈ B
1({Ui},O). Thus H1(P1,O) = 0.

Theorem 2.44. Let ϕ : F −→ G be a morphism of sheaves over X. Then there

are induced homomorphisms ϕ̃ : Cp(X,F) −→ Cp(X,G) and ϕ∗ : Hp(X,F) −→
Hp(X,G).

Proof. We first fix a cover U . Define a homomorphism ϕ̃ : Cp(U ,F) −→
Cp(U ,G) by ϕ̃(si0,...ip) = ϕUi0,...ip

(si0,...ip). Note that ϕ̃ is compatible with

refinements, in the sense that it commutes with R. Therefore it descends to a ho-

momorphism ϕ̃ : Cp(X,F) −→ Cp(X,G). Moreover ϕ̃ commutes with d by def-

inition of morphism. Therefore ϕ̃ induces a homomorphism ϕ∗ : Hp(X,F) −→
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Hp(X,G) as required.

Lemma 2.45. Let 0 → A α−→ B β−→ C → 0 be a short exact sequence of

sheaves on X. Then the induced sequence 0 −→ Cp(X,A)
α̃−→ Cp(X,B)

β̃−→
Cp0 (X, C) −→ 0 is exact, where Cp0 (X, C) = im(β̃).

Proof. We must check that for all open U ⊂ X the sequence 0 −→ A(U)
αU−−→

B(U)
βU−−→ C(U) is exact. By definition, ker(αU ) = ker(α)(U) = 0 so the se-

quence is exact at A. Now since ker(α) = 0 the presheaf image of A is A
itself. Hence the sheaf image of α is precisely its presheaf image. Therefore

im(αU ) = im(α)(U) = ker(β)(U) = ker(βU ) so the sequence is exact at B.

Remark 2.46. The proof of the previous theorem raises an obvious question.

When is the sequence 0 −→ A(X)
αX−−→ B(X)

βX−−→ C(X) −→ 0 exact at C(X)?

Equivalently, when can we lift global sections of C to global sections of B? We

demonstrate that the obstruction to lifting is encoded by H1(X,A).

Let U = {Ui} be an open cover of X such that βU is surjective for all Ui ∈ U .

Fix some arbitrary x ∈ C(X) and lift s to ti ∈ B(Ui). The obstruction to their

gluing to yield a global section of B is encoded by

fij = ti − tj ∈ A(Uij)

using the exactness of the sequence at A(X). By definition d(fij) = fij +

fjk + fki = 0 on Uijk so {fij} ∈ Z
1(U ,A). Clearly {fij} = 0 in Z1(U ,A) is a

sufficient condition for s to lift globally, but it is not necessary. Indeed there

was an ambiguity in choosing the ti, for we may equally choose

t̃i = ti + εi

for any εi ∈ ker(β)(Ui) = im(α)(Ui) by exactness. Now we note that

t̃i − t̃j = fij + εj − εi

so there exists a compatible lift iff {fij} = {εi} for some εi ∈ A(Ui), that is to

say if {fij} ∈ B
1(U ,A). Therefore βX is surjective iff H1(X,A) = 0.

Lemma 2.47. Assume the setup of Lemma 2.45 and recall the definition of

Cp0 (X, C). Since d commutes with β̃ we may naturally define Hp
0 (X, C). If X is

paracompact then there is an isomorphism Hp
0 (X, C) ∼= Hp(X, C).

Proof. A version of this lemma is proved in Hirzebruch [18, §2.9].
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Theorem 2.48 (The Long Exact Sequence In Cohomology). Let

0→ A α−→ B β−→ C → 0

be a short exact sequence of sheaves on X. Then there is a long exact sequence

in cohomology

0 −→ H0(X,A)
α
∗

−−→ H0(X,B)
β
∗

−→ H0(X, C) δ
∗

−→ H1(X,A)
α
∗

−−→ H1(X,B)
β
∗

−→ . . .

Proof. By Lemma 2.45 we have a commutative diagram

0 Cp(X,A) Cp(X,B) Cp0 (X, C) 0

0 Cp+1(X,A) Cp+1(X,B) Cp+1
0 (X, C) 0

α̃

d

β̃

d d

α̃ β̃

in which the rows are exact and the columns are complexes. The definitions of

α∗ and β∗ are obvious from the commutativity of the diagram, and exactness

at Hp(X,B) is trivial. We now construct the homomorphism δ∗.

Let [s] ∈ Hp(X, C) with representative cocycle s. Invoking Lemma 2.47

we may regard s ∈ Cp0 (X, C) with d(s) = 0. Since β̃ is surjective there exists

t ∈ Cp(X,B) with β̃(t) = s. Now by commutativity d(g) ∈ Cp+1(X,B) is

in ker(β̃) = im(α̃). So there exists f ∈ Cp+1(X,A) such that α̃(f) = d(g).

Again by commutativity we have d(f) = 0, so [f ] ∈ Hp+1(X,A). We define

δ∗([s]) = [f ].

To check that this is well-defined is easy diagram chasing. Similarly the

exactness of the sequence at Hp(X,A) and Hp(X, C) is elementary yet tedious.

Proofs may be found in any homological algebra text.

Remark 2.49. This theorem underpins the power of cohomological methods. It

is ubiquitous in the arguments of §6.

Example 2.50. We reconsider the exponential sheaf sequence defined in Exam-

ple 2.27. The corresponding long exact sequence of cohomology is given by

0 −→ H0(X,Z) −→ H0(X,O) −→ H0(X,O∗) −→ H1(X,Z) −→ . . .

In particular we now know immediately that the short sequence of global sec-

tions is exact iff H1(X,Z) = 0. Thus if g is a nonzero holomorphic function on

X, we may define a holomorphic branch of log(g) on X iff X is simply connected.
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3 Bundles

In elementary twistor theory the most important sheaves arise as sections of

vector bundles. Moreover, Yang-Mills theory is best described in terms of con-

nections on fibre bundles. Our ultimate goal, a sketch of the Penrose-Ward

transform, will rely on both of these ingredients. This serves as good motiva-

tion for formally studying the mathematics of bundles.

We begin by rigorously reviewing the basic properties of fibre bundles, in-

cluding their construction via transition functions. We specialize to the im-

portant cases of vector and principal bundles, demonstrating their natural as-

sociation. Finally we briefly introduce connections on principal bundles, using

the resulting covariant derivative on a trivial vector bundle to formulate Yang-

Mills theory in mathematically precise language. For brevity we omit several

technical proofs without explanation, referring the reader to Nakahara [28].

The mathematically experienced or physically motivated reader might prefer

to skip this section, referring to it later in the text as necessary. Nevertheless a

thorough study of this material will reward the audience with some useful gems,

such as Sparling’s contour integral formulae.

3.1 Fibre Bundles

Definition 3.1. A fibre bundle over a topological space X is a collection

(E, π, F ) satisfying the following conditions

1. E and F are topological spaces.

2. π : E −→ X is a continuous surjection.

3. For all x ∈ X there is a neighbourhood U 3 x and a homeomorphism

ϕ : π−1(U) −→ U × F making the following diagram commute

π−1(U) U × F

U

π

ϕ

proj1

We call E the total space, X the base space, π the projection, F the fibre,

and {(U,ϕ)} a local trivialisation.

Remark 3.2. Morally, a fibre bundle is a space E which is locally a direct product

of spaces X and F .

16



Example 3.3. The direct product X×F is called the trivial bundle with fibre

F over X.

Definition 3.4. A local section of the fibre bundle (E, π, F,X) over an open

set U ⊂ X is a map s : U −→ E such that π ◦ s = idX . The space of local

sections over U is denoted Γ(U,E).

Remark 3.5. The sections of a fibre bundle form a sheaf on X. We abuse

notation by referring to this sheaf as E, when it is convenient.

Definition 3.6. Let (ϕi, Ui) and (ϕj , Uj) be two local trivialisations with Uij =

Ui ∩Uj 6= ∅. Then on Uij ×F we define the transfer function Tij = ϕi ◦ϕ
−1
j .

Remark 3.7. This is a homeomorphism by definition of ϕi and ϕj .

Definition 3.8. Denote the homeomorphism group of F by Homeo(F ). Define

the transition function tij : Uij −→ Homeo(F ) by

Tij(x, f) = (x, tij(x)f)

Remark 3.9. The transition functions for a fibre bundle tell us how to glue

together the locally trivial areas on overlaps. They can be regarded as encoding

the twisting of the fibre bundle. Clearly if E is the trivial bundle X × F then

one can choose all transition functions such that tij(x) = idF .

Lemma 3.10. The transition functions satisfy the following relations

1. tii(x) = idF on Ui.

2. tij(x)tji(x) = idF on Ui ∩ Uj .

3. tij(x)tjk(x)tki(x) = idF on Ui ∩ Uj ∩ Uk.

Proof. Trivial from the definition.

Remark 3.11. Apply the language of Čech cohomology to maps U −→ Homeo(F )

taking the abelian group operation to be pointwise multiplication. The condi-

tions 2 and 3 then say that the transition functions {tij} form a 1-cochain and

a 1-cocycle respectively.

Theorem 3.12 (Reconstructing Fibre Bundles). Let X be a space with open

covering {Ui}. Suppose we are given a space F , a group G ≤ Homeo(F ) and

functions tij : Uij −→ G satisfying the 1-cocycle condition. Then there exists a

fibre bundle E over X with fibre F and transition functions tij .
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Proof. Let Ẽ =
⊔
i(Ui × F ) endowed with the product topology. Define an

equivalence relation on Ẽ by

(x, f) ∼ (y, g) iff x = y and g = tij(x)f

whenever (x, f) ∈ Uj×F and (y, g) ∈ Ui×F . Note that we required the cocycle

condition for this to be transitive. Now we let E = Ẽ/ ∼ endowed with the

quotient topology.

There is a natural projection π : E −→ X given by π([x, f ]) = x. We

define local trivialisations ϕj([x, f ]) = (x, f), which are homeomorphisms by

construction of E, and clearly satisfy the required commutative diagram. Finally

on Uij we have ϕi◦ϕ
−1
j (x, f) = (x, tij(x)f) so the transition functions are tij .

Remark 3.13. We have an immediate converse to the statement in Remark 3.9,

namely if we can choose all transition functions such that tij(x) = idF then the

bundle is trivial.

Lemma 3.14. Let (E, π, F ) be a fibre bundle over X with transition functions

tij relative to a covering {Ui} of X. Suppose we are given a collection of maps

fi : Ui −→ F satisfying on Uij

fj(x) = tji(x)fi(x)

Then {fi} determines a global section of E and all global sections arise in this

way.

Proof. Let ϕi : π−1(Ui) −→ Ui × F be the local trivialisations inducing the

transition functions tij . Then fi determines a local section f̃i of E over Ui by

f̃i(x) = ϕ−1
i (x, fi(x))

Now on Uij we have

f̃j(x) = ϕ−1
j (x, fj(x)) = ϕ−1

j (x, tjifi(x)) = ϕ−1
j ϕjϕ

−1
i (x, fi(x)) = f̃i(x)

so the local sections glue to form a global section f̃ . Conversely if f̃ is a global

section then by restriction we obtain local sections f̃i on Ui with f̃i = f̃j on Uij .

Defining fi(x) = proj2 ◦ ϕi ◦ f̃i(x) we have

(x, fj(x)) = ϕjϕ
−1
i (x, fi(x)) = (x, tjifi(x))

on Uij as required.
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Definition 3.15. Let (E, π, F ) be a fibre bundle over X, and G a subgroup of

Homeo(F ). A G-atlas for (E, π, F ) is a collection {(Ui, ϕi)} of local trivialisa-

tions such that X =
⋃
Ui and the induced transition functions are G-valued.

Definition 3.16. A G-bundle (E, π, F,G) is a fibre bundle with a maximal

G-atlas. G is called the structure group of the bundle.

Remark 3.17. By definition of transition functions we consider the structure

group G to have a natural left action on the fibre F . In section 3.3 we see that

for a certain class of bundles one can also define a right action of G on the total

space E. This distinction is conceptually important as we develop the theory.

Lemma 3.18. Consider a G-bundle (E, π, F ) over X. Let H be the set of

transition functions at x ∈ X. Then H = G.

Proof. Clearly H ⊂ G. Let g ∈ G and h ∈ H. Then there are local trivialisa-

tions ϕi and ϕj in some neighbourhood U of x such that (x, h.f) = ϕi ◦ϕj(x, f)

for all f ∈ F . Define ϕk = (idU × gh
−1) ◦ϕi : π−1(U) −→ U ×F a local trivial-

isation. Note that ϕk must be in the G-atlas of E for it is maximal. Moreover

ϕk ◦ ϕj(x, f) = (x, gh−1h.f) = (x, g.f) so g ∈ H as required.

Remark 3.19. Every fibre bundle can be considered as a G-bundle by choosing

G = Homeo(F ). More generally an H-bundle is clearly a G-bundle if H ≤ G.

The converse is more subtle, and motivates the following definition.

Definition 3.20. Let E be a G-bundle, and suppose there exists a choice of

local trivialisations such that the transition functions take values in H ≤ G.

Then we say that the structure group of E is reducible to H.

Example 3.21. A bundle is trivial iff its structure group is reducible to {id}.

Remark 3.22. Following Isham [23] we note without proof that the reducibility

of structure groups is related to spontaneous symmetry breaking in Yang-Mills

theory and the identification of Riemannian metrics in differential geometry.

Definition 3.23. Let (Ei, πi, Fi) be fibre bundles over Xi for i = 1, 2. A

morphism of fibre bundles is a continuous map f̃ : E1 −→ E2 mapping each

fibre π−1
1 (x) of E1 onto a fibre π−1

2 (y) of E2.

Lemma 3.24. f̃ induces a continuous map f on base spaces satisfying the

commutative diagram

E1 E2

X1 X2

π1

f̃

π2

f
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Proof. The definition of the map is trivial, so we only need prove continuity.

This follows from the continuity and openness of π1 and π2, viz. Naber [27, p.

67].

Definition 3.25. Suppose (Ei, πi, Fi) are fibre bundles over the same base X

for i = 1, 2. Then a bundle morphism f̃ : E1 −→ E2 is an equivalence if f̃ is

a homeomorphism and the induced map f = idX . An automorphism of E1 is

an equivalence f̃ : E1 −→ E1.

Lemma 3.26. Let E and E′ be G-bundles over X with the same fibre. Suppose

also that they have common trivialising neighbourhoods {Ui}. Let gij and g′ij

denote their transition functions. Then E and E′ are equivalent iff there exist

continuous functions λi : Ui −→ G such that

g′ij(x) = λi(x)−1gij(x)λj(x)

Proof. (⇒) Let α̃ : E −→ E′ be an equivalence. Choose local trivialisations

ϕi, ϕ
′
i on π−1(Ui). We define λi : Ui −→ G by

λi(x).f = ϕi ◦ α̃
−1 ◦ ϕ′−1

i (x, f)

which is well-defined since α̃ is an equivalence. Now we check

λi(x)−1gij(x)λj(x).f = ϕ′i ◦ α̃ ◦ ϕ
−1
i ◦ ϕi ◦ ϕ

−1
j ◦ ϕj ◦ α̃

−1 ◦ ϕ′−1
j (x, f)

whence the required relation holds.

(⇐) Define α̃ locally on π−1(Ui) as follows. Let p ∈ π−1(Ui) with ϕi(p) =

(x, fi). Then take

α̃i(p) = ϕ′−1
i (x, λi(x)−1.fi)

Clearly this is a homeomorphism, so it only remains to check compatibility on

overlaps Ui ∩ Uj . We calculate

α̃j(p) = ϕ′−1
i ◦ ϕ′i ◦ ϕ

′−1
j (x, λj(x)−1.fj)

= ϕ′−1
i (x, g′ij(x)g′ij(x)−1λi(x)−1gij(x)gij(x)−1.fi)

and the result follows.

Lemma 3.27. If X is contractible then every fibre bundle over X is equivalent

to the trivial bundle.

Proof. See Steenrod [36, p. 53].
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Lemma 3.28. If f : A −→ X is nullhomotopic then it extends to a map

f : CA −→ X where CA is the cone over A.

Proof. Recall the definition CA = (A × I)/(A × {1}). A nullhomotopy F :

A× I −→ X is a continuous map with F (a, 0) = f(a) and F (a, 1) = k for some

constant k ∈ X. Then F is precisely an extension of f to CA.

Theorem 3.29. The equivalence class of a G-bundle E over Sn is completely

determined by the homotopy class of its transition functions.

Proof. Define an open covering of Sn by taking US = Sn \ {north pole} and

UN = Sn \ {south pole}. Since UN and US are contractible, E reduces to

a trivial bundle over each of them. The structure of E is hence completely

determined by the transition function tNS : UN ∩ US −→ G.

Suppose tNS and t′NS are homotopic transition functions, defining bundles E

and E′ respectively. Then tNSt
′−1
NS is a nullhomotopic function on UN∩US . Since

UN and US are cones over UN ∩ US we may extend tNSt
′−1
NS to λN : UN −→ G.

Define λS : US −→ G by λS(x) = e. Then on UN ∩ US we have

λN (x)−1tNS(x)λS(x) = t′NS(x)tNS(x)−1tNS(x)e = t′NS(x)

so we are done by Lemma 3.26.

3.2 Vector Bundles

Definition 3.30. A vector bundle is a fibre bundle whose fibre is a finite

dimensional vector space, and whose transition functions take values in GL(k)

where k = dim(V ). A morphism of vector bundles is a fibre bundle morphism

which is linear on fibres. A vector bundle whose fibre is one-dimensional is called

a line bundle.

Theorem 3.31 (Classification of Line Bundles). LetM be a complex manifold.

Then H1(M,O∗) ∼= {equivalence classes of holomorphic line bundles on M}.

Proof. A holomorphic line bundle onM is completely determined by its transi-

tion functions with respect to some cover {Ui}. These are holomorphic functions

fij : Uij −→ GL(1,C) = C∗ subject to the conditions of Lemma 3.10. Following

Remark 3.11 we note that these precisely require that {fij} ∈ Z
1({Ui},O

∗).

From Lemma 3.26 we see that a holomorphic line bundle is equivalent to

the trivial bundle iff fij = λjλ
−1
i on Uij for some λi ∈ O

∗(Ui). This is exactly

the condition {fij} ∈ B1({Ui},O
∗). In other words, inequivalent holomor-

phic line bundles with trivialising neighbourhoods {Ui} biject with elements of

H1({Ui},O
∗). Taking the limit of progressively finer covers yields the result.
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Corollary 3.32. The group of equivalence classes of holomorphic line bundles

over P1 is isomorphic to Z.

Proof. Recall the exponential sheaf sequence (Example 2.27) and consider the

section

H1(P1,O) −→ H1(P1,O∗) −→ H2(P1,Z) −→ H2(P1,O)

of the induced cohomology sequence. Now H1(P1,O) = 0 by Example 2.43

and H2(P1,O) = 0 since our Leray cover of P1 has only 2 open sets. Finally,

H2(P1,Z) = Z since P1 is topologically a sphere. The result follows by the

above theorem.

Example 3.33 (Tensor Product Bundles). Let (E1, π1, V1) and (E2, π2, V2) be

vector bundles over X with transition functions gij and hij relative to some

fixed cover {Ui} of X. We define the tensor product bundle E1 ⊗ E2 to have

fibre V1 ⊗ V2 and transition functions gij ⊗ hij pointwise. This defines a vector

bundle over X by the reconstruction theorem (Theorem 3.12).

Example 3.34 (Dual Bundles). Let (E, π, V ) be a vector bundle over X with

transition functions gij relative to the cover {Ui}. The dual bundle E∗ is defined

to be the vector bundle with fibre V ∗ and transition functions (g−1
ij )∗ pointwise,

where g∗ denotes the transpose of g. These transition functions are chosen so

that the cocycle condition in Theorem 3.12 is naturally satisfied.

Example 3.35 (Line Bundles). Let (E, π, V ) be a line bundle with transition

functions gij : Uij −→ GL(C) ∼= C. We identify V ⊗n ∼= V by sending e⊗ · · · ⊗
e 7−→ e for some 0 6= e ∈ V and extending linearly. We therefore regard E⊗n as

a line bundle with fibre V and transition functions gnij(x) ≡ gij(x)n ∈ C.

Similarly we may identify V ∼= V ∗ by sending e 7−→ (λ 7−→ eλ) for all e ∈ V .

This allows us to identify g∗ with g for all V -automorphisms g. Therefore we

regard E∗ as a line bundle with fibre V and transition functions g−1
ij (x) ≡

gij(x)−1 ∈ C.

Example 3.36 (Tautological Bundle). Endow Cn+1 with coordinates z = (z0, . . . , zn)

and Pn with homogeneous coordinates [z] = [z0 : · · · : zn]. We define a line bun-

dle O(−1) over Pn by choosing the fibre over [z] to be the line in Cn+1 defined

by [z]. Consider the open cover of Pn given by Ui = {[z] such that zi 6= 0}. We

define local trivialisations on π−1(Ui) ⊂ Pn × Cn+1 by

ϕi([z], λz) = ([z], λzi)

which are easily seen to be homeomorphisms and linear on fibres, where λ ∈ C.
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The transition functions satisfy

([z], tij([z])λ) = ϕi ◦ ϕ
−1
j ([z], λ) = ϕi([z], (λ/zj)z) = ([z], (zi/zj)λ)

so tij([z]) = zi/zj .

We further define O(1) = O(−1)∗, O(k) = O(1)⊗k and O(−k) = O(−1)⊗k

for k ∈ N. By the preceding examples these are line bundles over Pn with the

same fibre as O(−1) and transition functions

tij([z]) =

{
(zj/zi)

k for O(k)

(zi/zj)
k for O(−k)

Finally defining O as O(1) ⊗ O(−1) we note that O has transition functions

tij([z]) = idC, so O is the trivial bundle over Pn. Thus the sections of O form

the sheaf O we encountered in Example 2.4.

Lemma 3.37. Let C[z0, . . . zn]k be the ring of homogeneous polynomials of

degree k in n+ 1 variables and Γ denote holomorphic sections. Then

Γ(Pn,O(k)) ∼=

{
C[z0, . . . zn]k for k ≥ 0

0 for k < 0

Proof. Use the usual open cover Ui = {[z] such that zi 6= 0} for Pn. By

Lemma 3.14 a global section of O(k) is a collection of holomorphic functions

si : Ui ∼= Cn −→ C such that sj(x) = tji(x)si(x) on Uij . Hence let {si} ∈
Γ(Pn,O(k)). Fix overlapping open sets Ui and Uj . Choose local coordinates

u = (u0, . . . ûi, . . . un) = (z0/zi, . . . ẑi/zi, . . . zn/zi) for Ui

v = (v0, . . . v̂j , . . . vn) = (z0/zj , . . . ẑj/zj , . . . zn/zj) for Uj

where the hat denotes omission. Then by Example 3.36 we have the condition

sj(v) = (vi)ksi(u) (?)

on the intersection Uij . Now expand the functions si and sj as power series in

uj and vi respectively, writing

si(u) =

∞∑
α=0

aα(uj)α

sj(v) =

∞∑
α=0

bα(vi)α

23



where aα ≡ aα(u0, . . . ûi, . . . ûj , . . . un) and bα ≡ bα(v0, . . . v̂i, . . . v̂j , . . . vn).

Noting that uj = (vi)−1, equation (?) becomes

∞∑
α=0

bα(vi)α = (vi)k
∞∑
α=0

aα(vi)−α (†)

Equating coefficients we find that bα = aα = 0 for α > k, and bα = ak−α for

0 ≤ α ≤ k. We immediately see that if k < 0 then Γ(Pn,O(k)) ∼= 0.

Now suppose k ≥ 0. Equation (†) says that si : Ui −→ C is a polynomial

function in the n variables {zl/zi : 0 ≤ l ≤ n, i 6= l}. In other words

si ∈ k[z0/zi, . . . ẑi/zi, . . . zn/zi]

The transition condition (?) then forces

(zi/zj)
ksi ∈ k[z0/zj , . . . ẑj/zj , . . . zn/zj ]

so certainly

(zi)
ksi ∈ k[z0, . . . zn]

Moreover (zi)
ksi must be a homogeneous polynomial of degree k.

We therefore define a ring homomorphism ϕ : Γ(Pn,O(k)) −→ C[z0, . . . zn]k

by {si} 7−→ f where

f(z) = si([z])(z
i)k for [z] ∈ Ui

This is well-defined by our earlier observations, and the homomorphism property

is trivial. Finally the inverse

si([z]) = f(z)/(zi)k

is well-defined by reversing the argument above.

Remark 3.38. This confirms that H0(P1,O) = C as seen in Example 2.43. We

further note that

H0(P1,O(k)) ∼=

{
Ck+1 for k ≥ 0

0 for k < 0

Remark 3.39. Note that local sections of O(−k) for k > 0 over U ⊂ Ui ⊂ Pn

may be regarded either as holomorphic functions on U , or as homogeneous

polynomials of degree −k in the n+ 1 variables (z0, . . . zn).

Example 3.40 (Sparling’s Formula). Work in homogeneous coordinates [π0
′ : π1

′ ]
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for P1. Let f01 ∈ Z1(P1,O(−1)) and regard it as a holomorphic function on

U01. Define g0, g1 ∈ C
0(P1,O(−1)) by

gi(πA′) =
1

2πi

∮
Γi

(ξB
′

πB′)
−1f01(ξA′)ξC′dξ

C
′

where the Γi are taken to be two contours in U01 surrounding πA′ as shown in

Figure A. Note that each gi is a homogeneous polynomial of degree −1 in the

πA′ so genuinely defines a section of O(−1) over Ui by Remark 3.39.

Figure A

We claim that d{gi} = g0 − g1 = f01 on U01. To prove this we work in the

coordinate chart ξC′ = (λ, 1) on U1 so that

gi(πA′) =
1

2πi

∮
Γi

f01(λ, 1)

π0
′ − λπ1

′
dλ

whence we find that

g0(πA′)− g1(πA′) =
1

2πi

∮
Γ

f01(λ, 1)

π0
′ − λπ1

′
dλ

= f01

(
π0
′/π1

′ , 1
)

= f01(π0
′ , π1

′)

where the contour Γ in C is as illustrated in Figure B. We therefore conclude

that every cocycle in C1(P1,O(−1) is a coboundary, so H1(P1,O(−1)) = 0.

Remark 3.41. The notation employed above is more fully explained in §4. Ob-

serve in particular the following subtlety. We regard gi(πA′) as a homogeneous

polynomial of degree −1 in the two variables (π0
′ , π1

′), whereas we view f01(πA′)

as a holomorphic function of the homogeneous coordinates [π0
′ : π1

′ ]. Clearly

our notation gi(πA′) and f01(πA′) does not clearly distinguish these.

Using Remark 3.39 and the proof of Lemma 3.37 we could easily rewrite
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Figure B

Sparling’s formula using only one of these possible viewpoints. Although super-

ficially clearer, this is more cumbersome in the long run. Henceforth we shall

rely on the reader to determine from which perspective we are examining local

sections of O(k). The answer should always be clear from the context.

Theorem 3.42.

H1(P1,O(k)) ∼=

{
0 for k ≥ −1

C−k−1 for k < −1

Proof. We treat first the case the k ≥ −1. Let f01 ∈ Z1(P1,O(k)) and view

f01(πA′) as a homogeneous polynomial of degree k. Let α(πA′) be a homoge-

neous polynomial of degree (k + 1). Then f01(πA′)/α(πA′) ∈ Z
1(P1,O(−1)) so

we may split it using Sparling’s formula as

f01(πA′)/α(πA′) = g0(πA′)− g1(πA′)

with g0, g1 ∈ C0(P1,O(−1)). Multiplying through by α(πA′) we immediately

exhibit f01 as a coboundary. Hence H1(P1,O(k)) = 0.

Now suppose k < −1. Let f01 ∈ Z1(P1,O(k)) and view f01(πA′) as a

homogeneous polynomial of degree k. Now we may calculate

f01(π0
′ , π1

′) = (π1
′)kf01(π0

′/π1
′ , 1)

= (π1
′)k

∞∑
r=−∞

ar

(
π0
′

π1
′

)r

=

∞∑
r=−k

a−r
(π1
′)k+r

(π0
′)r

+

∞∑
r=0

ar
(π0
′)r

(π1
′)r−k

+

−k−1∑
r=1

a−r
(π1
′)k+r

(π0
′)r
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The first two terms are well-defined on U0 and U1 respectively. Moreover they

are both homogeneous of degree k in (π0
′ , π1

′). Therefore together they define

an element of C0(P1,O(k)). In other words, f01 is cohomologous to

f̃01(πA′) =

−k−1∑
r=1

a−r
(π1
′)k+r

(π0
′)r

Observe that this is well-defined only on U01, so we cannot simplify futher. f̃01

has −k−1 free complex parameters, namely the ar. Therefore we conclude that

H1(P1,O(k)) = C−k−1.

Remark 3.43. The evident isomorphism H1(P1,O(−k − 2)) ∼= H0(P1,O(k)) is

no coincidence. It is a special case of Serre duality, which is treated fully in

Hartshorne [17, §III.7].

3.3 Principal Bundles

Definition 3.44. Let G be a topological group. A principal G-bundle is a

G-bundle with fibre G, where the transition functions act on G by left multipli-

cation. The structure group G is called the gauge group.

Lemma 3.45. Let (E, π,G) be a principal bundle over X. Then there a con-

tinuous right action σ of G on E defined fibrewise by right multiplication.

Proof. We must check that σ is well-defined on E. Consider local trivialisations

ϕi : π−1(Ui) −→ Ui×G. Let x ∈ Ui∩Uj and u ∈ π−1(x). Define ϕi(u) = (x, fi)

and ϕj(u) = (x, fj) so fj = tji(x)fi. Write σi for σ|Ui
. Then we have

σi(u, g) ≡ ϕ−1
i (x, fig) = ϕ−1

j (x, tji(x)fig) = ϕ−1
j (x, fjg) ≡ σj(u, g)

so σ is independent of choice of local trivialisation. Continuity follows from the

continuity of the trivialisations and group operation.

Remark 3.46. Clearly σ acts freely and transitively on fibres, these being trivial

properties of right multiplication. We sometimes write σ(u, g) ≡ u.g.

Definition 3.47. A morphism of principal G-bundles is a fibre bundle mor-

phism ϕ : E1 −→ E2 which is G-equivariant with respect to the right action.

That is, ϕ(u.g) = ϕ(u).g for all u ∈ E1 and g ∈ G.

Example 3.48 (Hopf Bundles). We exhibit S2n−1 as a principal U(1)-bundle

over Pn−1. We can view S2n−1 as a complex n− 1 sphere, that is

S2n−1 = {(z0, . . . zn) ∈ Cn : |z0|2 + · · ·+ |zn|2 = 1}
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Define a projection π : S2n−1 −→ Pn−1 by

π(z0, . . . zn) = [z0 : · · · : zn]

The fibre of π over [z0 : · · · : zn] is given by

{λ(z0, . . . zn) : |λ| = 1}

which is topologically a circle U(1). We give S2n−1 a bundle stucture by choos-

ing trivialising neighbourhoods US = S2n−1 \ {north pole} and UN = S2n−1 \
{south pole} and specifying a transition function tNS : UN ∩ US −→ U(1).

Remark 3.49. Suppose n = 2, then we find that S3 is a U(1)-bundle over S2. In

this case UN ∩ US is homotopy equivalent to U(1). Invoking Theorem 3.29 we

see that the bundle structure of S3 is completely determined by the homotopy

class of tNS : S1 −→ S1. Therefore equivalence classes of U(1)-bundles over S2

are classified by the fundamental group π1(U(1)) = Z. In particular we may

always choose a transition function of the form tNS(ϕ) = einϕ with n ∈ Z.

Theorem 3.50. Let (E, π,G) be a principal bundle over X and U ⊂ X open.

There is a bijection between local sections of E over U and local trivialisations

ϕ : π−1(U) −→ U × G. The section associated with a given trivialisation is

called a canonical section, and vice versa.

Proof. Let s : U −→ P be a local section. Fix x ∈ U . For each p ∈ π−1(U)

there exists a unique g ∈ G such that p = s(x).g, since the right action of G

is transitive and free. Define the canonical local trivialisation ϕ : π−1(U) −→
U×G by ϕ(u) = (p, g). By construction this is a bijection and continuity follows

easily, viz. Naber [27, p. 221]. Conversely let ϕ : π−1(U) −→ U ×G be a local

trivialisation. Define the canonical section s : U −→ P by s(x) = ϕ−1(x, e).

Remark 3.51. In the canonical local trivialisation, the section s : U −→ P may

be viewed as the constant map s : U −→ G given by s(x) = e. In this sense the

association is manifestly canonical.

Corollary 3.52. A principal bundle is trivial iff it admits a global section.

Definition 3.53. Let E be a principal G-bundle over X and U ⊂ X open.

A local gauge on U is a choice of local section of E over U . Let s and t be

local gauges. A local gauge transformation from s to t is a smooth map

f : U −→ G such that t(x) = s(x).f(x).

Remark 3.54. Owing to the correspondence in the previous theorem, a local

gauge may be thought of as a distinguished local trivialisation for the bundle.
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Theorem 3.55. Let (E, π,G) be a principal bundle over X and U ⊂ X open.

There is a bijection between local gauge transformations over U and bundle

automorphisms of π−1(U).

Proof. Let s be a local section over U and f : U −→ G a local gauge trans-

formation. Define Φ : π−1(U) −→ π−1(U) by Φ(s(x).h) = (s(x).g(x)h) for all

h ∈ G. Observe that this is a bundle automorphism. Conversely given Φ and s

define t(x) = Φ−1(s(x)). Then t is another section of P so there exists g(x) ∈ G
with t(x) = s(x).g(x). Note that g is smooth, and we are done.

Remark 3.56. We therefore refer to bundle automorphisms of π−1(U) as gauge

transformations, appealing to this correspondence. This makes the following

definition sensible.

Definition 3.57. Let E be a principal G-bundle over X. A (global) gauge

transformation is a bundle automorphism, i.e. a diffeomorphism f : E −→ E

preserving fibres and commuting with the right action of G on E. The collec-

tion of all gauge transformations forms the group of gauge transformations

denoted G(E).

Definition 3.58. Let P be a principal G-bundle over X with transition func-

tions tij . Let ρ be a representation of G on a vector space V . We define the

associated vector bundle P ×ρ V over X to have fibre V and transition

functions ρ(tij).

Remark 3.59. Suppose ρ is faithful. Then clearly P and P ×ρ V share the same

transition function data. The difference arises in the way the structure group

acts on a typical fibre. In particular note that P is trivial iff P ×ρ V is trivial.

Remark 3.60. In gauge field theories, matter fields interacting with the gauge

field are viewed as sections of an associated vector bundle. See Naber [27, §6.8].

Example 3.61 (Adjoint Bundle). Let G be a Lie group with Lie algebra g. Then

we define the adjoint representation Ad of G on g by Ad(g)X = gXg−1. If P

is a principal G-bundle then the associated vector bundle P ×Ad g is called the

adjoint bundle, and denoted Ad(P ).

Remark 3.62. We see in §3.4 that Yang-Mills fields may be regarded as sections

of the adjoint bundle associated with a gauge principal bundle.

Example 3.63 (Spin Bundle). Let P be an orthonormal frame bundle over an n-

dimensional manifoldM. That is to say, P is a principal SO(n)-bundle. Recall

that Spin(n) is a double cover of SO(n) via some homomorphism ϕ.

Suppose that P has transition functions tij . Assume we may lift P to a

Spin(n) bundle P̃ overM, in the sense that P̃ has transition functions t̃ij with
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ϕ(t̃ij) = tij . Let ρ be a representation of Spin(n) on a vector space V which

does not descend to a representation of SO(n). Such a representation is called

a spin representation. The associated bundle P̃ ×ρ V is called a spin bundle

over M.

In the case that M is a 4-dimensional Lorentzian manifold, we recall that

Spin(1, 3) ∼= SL(2,C). The Weyl spin bundle is then the vector bundle associ-

ated to P̃ via the fundamental representation of SL(2,C) on C2.

Remark 3.64. The lifting of P to P̃ is not always possible. In fact the obstruction

is measured by the second Steifel-Whitney class of M , namely H2(M,Z2). See,

for example, Nakahara [28, p. 451].

Definition 3.65. Let E be a vector G-bundle over X with transition func-

tions tij . The associated principal bundle P (E) has fibre G and transition

functions tij acting on G by left multiplication.

Remark 3.66. Note that E is the vector bundle associated to P (E) via the

fundamental representation of G.

Example 3.67 (Frame Bundle). Consider the tangent bundle TM over an n-

dimensional manifold M. The associated principal bundle is

FM =
⊔
p∈M

FpM

where FpM is the set of frames at p.

Example 3.68. The Hopf bundles S3 over S2 are associated principal bundles

for the vector bundles O(k) over P1. Consider the usual open cover Ui for P1

with homogeneous coordinates [z0 : z1]. In Example 3.36 we found transition

functions

t01([z]) =

(
z1

z0

)k
for O(k). We may reduce the structure group to U(1) by taking

t01([z]) =

(
z1|z0|
z0|z1|

)k

Now suppose [z] lies on the equator of P1. Write zj = |zj |eiϕ
j

for j = 0, 1 and let

ϕ = ϕ1 − ϕ0 be an equatorial coordinate. Then we obtain transition functions

t01(ϕ) = eikϕ. By Remark 3.49 these define the Hopf bundles over S2.
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3.4 Gauge Fields

Definition 3.69. Let M be a manifold and V a vector space. Let E be the

trivial bundle M× V . A V -valued r-form on M is a section of the bundle∧r
(T ∗M)⊗ E

We denote the Γ(M) module of V -valued r-forms by Ωr(M, V ).

Remark 3.70. Equivalently a vector-valued form is a smoothly varying collection

of linear maps ωp :
∧r

(T ∗pM) −→ V defined for each p ∈ M. Clearly an

ordinary differential form is merely an R-valued form.

Definition 3.71. Let ω be a V -valued r-form, and choose a basis eα for V .

Then we may write ω = ωαeα, where ωα are R-valued r-forms. The exterior

derivative of ω is defined by dω = (dωα)eα.

Definition 3.72. Let g be a Lie algebra. Suppose ω ∈ Ωr(M, g) and η ∈
Ωs(M, g). Then the Lie wedge product [ω ∧ η] ∈ Ωr+s(M, g) is defined by

[ω∧η](X1, . . . Xr+s) =
∑

σ∈Sr+s

sgn(σ)[ω(Xσ(1), . . . Xσ(r)), η(Xσ(r+1), . . . Xσ(r+s))]

where [a, b] denotes the Lie bracket of g.

Definition 3.73. Let P be a principal G-bundle over M. Suppose p ∈ P and

m = π(p). The vertical subspace VpP ⊂ TpP is defined by

VpP = ker{π∗ : TpP −→ TmM}

Remark 3.74. In other words the vertical subspace consists of those vectors

which are tangent to the fibre at p.

Definition 3.75. Define a map ζ : g −→ Γ(TM) by

ζ(A)pf =
d

dt

∣∣∣∣
t=0

f(p� etA)

where � denotes the right action of G on P . We denote ζ(A) by A] and call it

the fundamental vector field generated by A.

Remark 3.76. It is easy to verify that ζ induces a vector space isomorphism

g −→ VpP as we might expect.

Definition 3.77. A horizontal subspace HpP ⊂ TpP is defined to satisfy

TpP = HpP ⊕ VpP
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Definition 3.78. A connection on a principal G-bundle P is a smoothly

varying choice of horizontal subspace HpP for all p ∈ P satisfying

(Rg)∗HpP = Hp�gP

Remark 3.79. In a local trivialisation there is evidently a trivial choice of con-

nection, namely HpP = TmM where m = π(p). Globally, however, the twisting

of the bundle ensures that there is no natural complement to VpP in TpP .

Theorem 3.80. A connection on a principal G-bundle P is equivalently a g-

valued 1-form ω satisfying

1. ωp(A
]
p) = A for all A ∈ g and p ∈ P .

2. R∗gωp�g = Ad(g−1)ωp for all g ∈ G and p ∈ P .

Proof. Given HP ⊂ TP we define ω by

ωp(X) =

{
A if X = A]

0 if X ∈ HpP

and extending linearly. Conversely given ω we define HP by

HpP = {X ∈ TpP : ω(X) = 0}

Algebraic manipulations ensure that the required identities hold.

Definition 3.81. Let P be a principal G-bundle. Suppose U ⊂ M is a triv-

ialising neighbourhood for P . We define a gauge potential to be a g-valued

1-form on U .

Remark 3.82. Henceforth we assume that the structure group G is a matrix

group, allowing us to simplify formulae greatly.

Theorem 3.83. Let P be a principal G-bundle overM with trivialising neigh-

bourhoods Ui and transition functions gij . A connection on P is equivalently a

collection {Ai} of gauge potentials satisfying on Ui ∩ Uj

Aj = g−1
ij Aigij + g−1

ij dgij

Proof. See Nakahara [28, p. 377].

Remark 3.84. In the case that M is contractible, P is equivalent to a trivial

bundle. Therefore we may take the cover to be U1 = M, and the overlap

condition becomes vacuous. This will often be the case for our purposes, when

working over Minkowski space M .
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Definition 3.85. A gauge transformation Φ : P −→ P acts on a connection

HP to yield a connection HΦP ≡ Φ∗(HP ). We say that HP transforms to

HΦP .

Remark 3.86. The fact that Φ∗(HP ) defines a connection is immediate since Φ

preserves fibres and is G-equivariant.

Lemma 3.87. Let ϕ : U −→ G be a local gauge transformation of P . Under

ϕ a gauge potential A on U transforms to

Aϕ = ϕ−1Aϕ+ ϕ−1dϕ

Proof. A local gauge transformation amounts to a local change of trivialisation.

Therefore the transformation law is given by the formula in Theorem 3.83.

Remark 3.88. To correctly formalise the correct notion for global gauge trans-

formations requires a little more work. See Figueroa-O’Farrill [13, p. 11] for

details.

Definition 3.89. The curvature of a connection ω on P is the g-valued 2-form

on P defined by

Ω = dω + [ω ∧ ω]

Remark 3.90. Geometrically one can show that ω provides a notion of horizontal

lifting of curves in M to P . The curvature then measures the failure of the

horizontal lift of a loop to close.

Definition 3.91. The gauge field associated to a gauge potential A is the

g-valued 2-form on M defined by

F = dA+ [A ∧A]

Remark 3.92. Note immediately that the gauge fields {Fi} associated to a con-

nection {Ai} precisely encode the curvature of the connection.

Lemma 3.93. The gauge fields {Fi} associated to the gauge connection {Ai}
satisfy on Ui ∩ Uj

Fj = g−1
ij Figij

Proof. Trivial algebra.

Remark 3.94. Hence under a local gauge transformation ϕ we see that F must

transform to Fϕ = ϕ−1Fϕ.
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Definition 3.95. Let P be a principal G bundle overM with trivialising neigh-

bourhoods Ui and a connection {Ai}. Suppose E = P ×ρ V is an associated

vector bundle. Fix a basis eα for V . Define local sections sα of E on Ui by

sα(x) = (x, eα) in the trivialisation induced from P . Define the associated

covariant derivative

D : TM× Γ(E) −→ Γ(E)

in coordinates xµ on some subset of Ui by taking

Dµs
α = (ρ∗Aiµ)βαeβ

Dµf = ∂µf

where ρ∗ : g −→ GL(V ) is the induced representation of g on V , and f is a

scalar field on M. For a general vector field ϕ = ϕαs
α we therefore have

Dµϕ = ∂µϕ+ (ρ∗Aiµ)βαϕβ

Remark 3.96. Note that the transformation law for the Ai precisely means that

DXϕ defines a global section of E as required.

Example 3.97. Suppose G is a matrix Lie group. If ρ is the fundamental repre-

sentation then the covariant derivative takes the form

Dµϕ = ∂µϕ+Aiµϕ

where matrix multiplication is implicit in the final term. If ρ is the adjoint

representation then the covariant derivative takes the form

Dµϕ = ∂µϕ+ [Aiµ, ϕ]

where [A,B] denotes the Lie bracket on g.

Lemma 3.98 (Bianchi Identity). Fix a principal G-bundle P overM. Consider

the curvature F of a gauge potential A onM, viewed as an element of the adjoint

bundle Ad(P ). In any coordinate chart on M we have D[µFνρ] = 0.

Proof. Defining D[µFνρ] = (DF )µνρ we calculate

DF = dF + [A ∧ F ] = d2A+ [dA ∧A]− [A ∧ dA] + [A ∧ dA]

+ [A ∧A ∧A]− [dA ∧ F ]− [A ∧A ∧A] = 0

as required.
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Definition 3.99. Let P be a principal G-bundle over Minkowski space M ,

where G is a semisimple matrix group. Since M is contractible, P is trivial so

we may work in a single trivialisation. Let Aa denote an arbitrary connection on

P and Fab its curvature, written in abstract index notation. The Yang-Mills

action on M is the functional of Aa given by

S[Aa] = −1

2

∫
M

Tr(FabF
ab)

Remark 3.100. The condition of semisimplicity ensures that the quadratic form

induced from the Killing form on g is non-degenerate.

Lemma 3.101. Varying the Yang-Mills action with respect to A and requiring

δS = 0 gives the Yang-Mills equations

D ∗ F = 0

These are a system of nonlinear partial differential equations for A.

Proof. This is trivial but tedious, so we omit it.

Lemma 3.102. Suppose F is an anti-self-dual gauge field, cf. Definition 4.27.

Then F automatically satisfies the Yang-Mills equations.

Proof. Immediate from the Bianchi identity.

Remark 3.103. This provides an important class of solutions to the Yang-Mills

equations. The ASD equation ∗F = −iF is particularly susceptible to attack

by twistor methods. We shall investigate this further in §6.3.
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4 Spinor Notation

The machinery of twistor theory is best presented in terms of spinors. These

can be regarded as the square root of Minkowskian geometry. Indeed they lie

in the fundamental representation of SL(2,C), a double cover of the proper

orthochronous Lorentz group. Much as the introduction of the imaginary unit

i simplifies and clarifies elementary algebra, the language of spinors allows a

unified treatment of physical theories.

We begin by demonstrating the fundamental isomorphism identifying Her-

mitian spinors with real vectors. This immediately extends to a dictionary

between real tensors and higher valence spinors, which we use liberally. Simple

algebraic properties of spinors are developed rigorously, including the definition

of a covariant derivative on a spinor field.

We rewrite physical field equations in spinor language, to faciliate their solu-

tion by twistor methods in §6. There follows a detailed consideration of confor-

mal invariance, a vital part of twistor philosophy. Finally we introduce twistors

in a physically motivated manner.

4.1 The Spinor Isomorphism

Definition 4.1. We define spinor space to be a 2-dimensional complex vector

space S with elements αA where A = 0, 1. These are called spinors. SL(2,C)

acts on S in the natural way

ϕ : SL(2,C)× S −→ S

(A,α) 7−→ Aα

Definition 4.2. We define conjugate spinor space to be the 2-dimensional

complex vector space S′ consisting of the complex conjugates of elements of S.

The elements are also called spinors but are written βA
′

to distinguish them

from elements of S. SL(2,C) acts on S′ according to

ψ : SL(2,C)× S′ −→ S′

(A, β) 7−→ Aα

Definition 4.3. An element of the tensor product space

S ⊗ . . .⊗ S ⊗ S∗ ⊗ . . .⊗ S∗ ⊗ S′ ⊗ . . .⊗ S′ ⊗ S′∗ ⊗ . . .⊗ S′∗

is called a spinor of higher valence and denoted αA...BC
′
...D

′

E...FG
′
...H

′ .
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Definition 4.4. We define the conjugation map S −→ S′ by

αA 7−→ αA
′

≡ αA

and extend it componentwise to higher valence spinors.

Remark 4.5. Conjugation defines an isomorphism S⊗S′ ←→ S′⊗S. In view of

this we adopt the convention that the relative ordering of primed and unprimed

indices among the upper or among the lower indices is unimportant.

Remark 4.6. Let α ∈ S and A ∈ SL(2,C). Observe that ψ(A,α) = ϕ(A,α).

Definition 4.7. A spinor with equal numbers of primed and unprimed indices

is Hermitian if αA′...B′C...D = αA′...B′C...D.

Example 4.8. A Hermitian spinor αA′B′CD satifies, for example α011
′
1
′ = α0

′
1
′
11.

Lemma 4.9. A 2-index Hermitian spinor is a Hermitian matrix.

Proof. (αAA′)
† = αA′A = αAA′ = αAA′ .

Theorem 4.10. Fix an arbitrary point x ∈M . There is a linear isomorphism

between real tensors of valence n at x and Hermitian spinors with n primed and

n unprimed indices.

Proof. We start with the case n = 1. Let V be the vector space of valence 1

tensors. Fix bases for V and S. Define a linear map

Ψ(V a) = V AA
′

=
1√
2

(
V 0 + V 3 V 1 + iV 2

V 1 − iV 2 V 0 − V 3

)

By the lemma this has the correct codomain, and it is clearly invertible. Now

let n = 2. Write

T ab =
∑

Tµνeµ ⊗ eν

where {eµ} are basis vectors for V . We then define

Ψ(T ab) = TAA
′
BB
′

=
∑

TµνΨ(eµ)⊗Ψ(eν)

Linearity and invertibility follow from the n = 1 case. Continue inductively for

higher valence tensors.

Remark 4.11. Henceforth we shall abuse notation by writing V a = V AA
′

and

so on. We shall always assume wlog that some bases for V and S have been

chosen to effect this identification.

Remark 4.12. Note that we may write Ψ(V a) =
∑
σbV b where σb is the usual

4-vector of Pauli matrices.
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Corollary 4.13. There is a linear isomorphism between complexified tensors of

valence n at a point of CM and spinors with n primed and n unprimed indices.

Definition 4.14. Since S is 2-dimensional there exists a unique non-zero skew

2-index spinor, which we write εAB . Given a basis for S we choose εAB such that

ε01 = 1. The complex conjugate is then εA′B′ = εAB which we shall write εA′B′

for brevity. We similarly define εAB such that ε01 = 1 and take εA
′
B
′

= εAB .

Note that eABεCB = δAC .

Lemma 4.15. εAB yields an isomorphism S ←→ S∗ by

αA = εABαB and αA = αBεBA

Proof. We check that they are mutually inverse, computing

αA = εBCαCεBA = δCAαC = αA

as required.

Remark 4.16. Care is needed when raising and lowering indices with ε since it

is skew. A useful mnemonic for our convention is “adjacent indices, descending

to the right”.

Lemma 4.17. αAβA = 0 iff αA = kβA some k ∈ C.

Proof. The backward direction is trivial from the skew-symmetry of ε. Con-

versely αAβBεBA = 0⇒ α1β0 = α0β1 = 0. Let k = α1/β1 = α0/β0.

Definition 4.18. A (normalised) dyad for S is a pair of spinors {oA, ιA}
such that oAιA = 1. By the above lemma {oA, ιA} span S.

Lemma 4.19. ||V a||2 = 2 det(V AA
′

), where || · || denotes the Minkowski norm.

Proof. Trivial from the definition of Ψ.

Definition 4.20. We say a vector V a ∈ V is future pointing if V 0 > 0. Ob-

serve that this concept is invariant under the action of the proper orthochronous

Lorentz group on V .

Theorem 4.21. Let 0 6= V a ∈ V . There exists 0 6= αA ∈ S such that V AA
′

=

αAαA
′

iff V a is null and future pointing.

Proof. Using the previous lemma we have

V a null ⇔ det(V AA
′

) = 0⇔ V AA
′

has rank 1⇔ V AA
′

is simple tensor
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Therefore V a is null iff V AA
′

= αAβA
′

with αAβA
′

= αA
′

β
A

. Now let {αA, oA}
be a dyad so that βA

′

= αA
′

β
A
oA. Then we find that βA

′

αA′ = 0 whence

βA
′

= kαA
′

. So V a is null iff V AA
′

= kαAαA
′

. Now observe that

V 0 =
1√
2
V 00

′

+ V 11
′

= k(|α0|2 + |α1|2)

so k ∈ R. If V a is future pointing rescaling αA 7−→
√
kαA yields the result.

Conversely if k = 1 then clearly V 0 > 0.

Remark 4.22. We see that a spinor oA defines a future pointing null vector via

V a = oAoA
′

while a future pointing null vector defines a spinor up to phase.

Lemma 4.23. Ψ(ηab) = εABεA′B′ . In particular V AA
′

VAA′ = V aVa.

Proof. Using the combinatorial definition of the determinant we find

||V a||2 = 2 det(V AA
′

) = εABεA′B′V
AA
′

V BB
′

Therefore εABεA′B′ yields the correct norms. It trivially satisfies the parallelo-

gram law, so we are done.

Lemma 4.24. Suppose we have a spinor α...CD... = α...[CD].... Then

α...CD... =
1

2
εCDα...A

A
...

Hence any spinor may be written as a product of a symmetric spinor and the

distinguished antisymmetric spinors ε.

Proof. Note that εA[BεCD] = 0 for it is skew on 3 indices. Writing this out fully

and raising some indices yields the identity

εABε
CD = δCAδ

D
B − δ

D
A δ

C
B

The result follows immediately by applying this.

Definition 4.25. A bivector is an antisymmetric valence 2 tensor F ab = F [ab].

We say that a bivector is simple if there exist vectors V a and W b with F =

V ∧W .

Remark 4.26. Beware the discrepancy between the definitions of simple for

bivectors and general tensors.

Definition 4.27. The Hodge dual of a bivector F on Minkowski space is

defined as

(∗F )ab =
1

2
εab

cdFcd
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where εabcd is the Levi-Civita symbol.

Remark 4.28. A standard calculation shows that ∗ ∗ F = −F . Hence ∗ has

eigenspaces with eigenvalues ±i. We say a bivector F is self-dual (SD) if ∗F =

iF and anti-self-dual (ASD) if ∗F = −iF . Any bivector can be decomposed

into SD and ASD parts via

F =
1

2
(F − i ∗ F ) +

1

2
(F + i ∗ F )

Lemma 4.29. Ψ(εabcd) = i(εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′).

Proof. Clearly the RHS is antisymmetric when any two unprimed indices and

their corresponding primed indices are interchanged. Furthermore the RHS is

Hermitian, so certainly the result is true up to scale. Now a simple calculation

shows that εabcdεabcd = −4! = −24. The corresponding calculation on the RHS

yields −(24 × 2− 4× 2) = −24 which establishes the claim.

Theorem 4.30. If Fab is a real bivector then

Fab = ϕABεA′B′ + ϕA′B′εAB

holds for some symmetric spinor ϕAB , and is a decomposition of F into ASD

and SD parts respectively.

Proof. We decompose Fab = FABA′B′ as follows

FABA′B′ = F(AB)A
′
B
′ + F[AB]A

′
B
′

= F(AB)A
′
B
′ +

1

2
εABFC

C
A
′
B
′

= F(AB)(A
′
B
′
) +

1

2
εA′B′F(AB)C

′
C
′

+
1

2
εABFC

C
(A
′
B
′
) +

1

4
εA′B′FCC′

CC
′

Since F is a bivector only the middle terms are nonzero. Moreover F is Hermi-

tian so we may write

FABA′B′ = εA′B′ϕAB + εABϕA′B′

Using the previous lemma we find

εab
cd = i(δCAδ

D
B δ

D
′

A
′ δC

′

B
′ − δDA δ

C
Bδ

C
′

A
′ δD

′

B
′ )

whence ϕABεA′B′ is ASD and ϕA′B′εAB is SD.

Lemma 4.31. A symmetric valence n spinor may be factorised as

ϕA...B = α(A . . . βB)
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The null vectors defined by the spinors αA, . . . βB are called the principal null

directions (PNDs) of ϕA...B .

Proof. Fix some basis for S and define ξA = (1, x). Consider the scalar func-

tion of x given by ϕA...Bξ
A . . . ξB . It is a polynomial of degree n, and since

x ∈ C we may factorise. Choose spinors αA, . . . βA such that the factors are

αAξ
A, . . . βAξ

A. Note that these are only defined up to scale. Multiplying out

the factors and equating coefficients yields the result.

Definition 4.32. A spinor field on a four-dimensional Lorentzian manifoldM
is a smooth choice of spinor for each x ∈M . Equivalently it is a smooth section

of a (tensor product of) spin bundle(s) overM as defined in Example 3.63. We

write S for the space of valence 1 unprimed spinor fields over M.

Definition 4.33. A spinor covariant derivative on M is a map ∇AA′ :

S −→ S∗ ⊗ S ′∗ ⊗ S satisfying

1. ∇AA′(α
B + βB) = ∇AA′α

B +∇AA′β
B

2. XAA
′

∇AA′f = X(f)

3. ∇AA′(fα
B) = f∇AA′α

B + αB∇AA′f

for all spinor fields αB , βB , scalar fields f and complex vector fields Xa on M.

We define ∇AA′ : S∗ −→ S∗ ⊗ S ′∗ ⊗ S∗ by requiring the Leibniz rule to hold,

namely

∇AA′(α
BβB) = ∇AA′(α

B)βB + αB∇AA′(βB)

We define ∇AA′ : S ′ −→ S∗ ⊗ S ′∗ ⊗ S ′ by complex conjugation, namely

∇AA′α
B
′

= ∇AA′α
B

We define the covariant derivative of a general spinor field by requiring that the

Leibniz rule hold on all contracted products χA...B
′

C...D
′αA . . . βB′γ

C . . . δD
′

.

Remark 4.34. Observe immediately that∇AA′ is real, in the sense that∇AA′α
B
′

=

∇AA′α
B
′

. Moreover ∇AA′ clearly commutes with contraction.

Theorem 4.35. There is a unique torsion free spinor covariant derivative on

M satisfying ∇AA′εBC = 0.

Proof. For uniqueness we refer the interested reader to Penrose and Rindler

[33, p. 214]. We explicitly construct such a covariant derivative. Let ∇a be

the metric covariant derivative on M, extended to complex vector fields via

∇a(Xb + iY b) = ∇aX
b + i∇aY

b. This defines ∇AA′ on spinor fields with equal

numbers of primed and unprimed indices both in lower and upper position.
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We extend this to general spinor fields using the Leibniz rule again. Fix an

arbitrary spinor field αB . Define a map f : S ′ × S ′ −→ S∗ ⊗ S ′∗ ⊗ S by

f(ξB
′

, ηC
′

) = ξB′∇a(αBηB
′

) + ηB′∇a(αBξB
′

)− αB∇a(ξB′η
B
′

)

which is well defined since ∇a acts only on complex vector and scalar fields. An

easy calculation shows that this is a Γ(M)-bilinear map, so may be written

f(ξB
′

, ηC
′

) = θa
B
B
′
C
′(αB)ξB

′

ηC
′

Observe that θa
B
B
′
C
′ must be antisymmetric in B′C ′ so we have

θa
B
B
′
C
′ = ϕa

B(αB)εB′C′

Finally we define ∇AA′α
B = 1

2ϕAA′
B so in particular

f(ξB
′

, ηC
′

) = 2(∇AA′α
B)ξB′η

B
′

so the Leibniz rule holds as required. Now it is easily verified that ∇AA′ sat-

isfies the definition of a covariant derivative. Tedious algebra establishes that

∇AA′εBC = 0 and ∇AA′ is torsion free, cf. Penrose and Rindler [33, p. 218].

Remark 4.36. Henceforth we shall always assume that ∇AA′ is the metric spinor

covariant derivative constructed above.

Example 4.37. We briefly describe a beautiful geometric interpretation of the

correspondence between spinors and past-pointing null vectors. This will help

to inform our intuition when we describe the twistor correspondence in §5.1.

Observe that P1 is the space of spinors at x regardless of scale and phase.

This corresponds to the projective past null cone of an observer at x. Topolog-

ically P1 is a sphere, which we may interpret as the celestial sphere familiar

from the night sky.

We may go further, and identify the effect of a Lorentz transformation in M

on the celestial sphere P1. In particular we exhibit an isomorphism between the

proper orthochronous Lorentz group SO(1, 3)+ and the conformal group C(2)

of S2 (cf. §4.4). Denote the past null cone by N− and write the Minkowski

metric in spherical coordinates as

ds2 = dt2 − dr2 − r2(dθ2 − sin2 θdϕ2)

so that the degenerate metric on N− becomes

ds2 = −r2(dθ2 + sin2 θdϕ2)
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Suppose r = R1(θ, ϕ) and r = R2(θ, ϕ) are two cuts of the past null cone definin-

ing representatives for PN−. Then clearly the induced metrics are conformally

related. Conversely we may obtain all metrics conformally related to the unit

round sphere metric on P1 by taking some cut of the past null cone.

Denote by C the set of smooth cuts of N−. We identify the conformal

group of P1 as the group of transformations C −→ C under composition. Now

recall that proper orthchronous Lorentz transformations precisely map the null

cone smoothly onto itself without reversing the arrow of time. Therefore we

immediately have SO(1, 3)+ = C(2).

As a physical application, consider the appearance of a spherical comet A

moving past Earth at a relativistic speed. Naively, in the rest frame of Earth

the comet should appear Lorentz contracted. However, such an effect is not

observed. This is easily explained in the conformal picture.

A spherical comet B at rest relative to Earth intersects a circular cone of past

null geodesics for a terrestrial observer O. Therefore B describes a circular disc

on the celestial sphere of O. Under a Lorentz transformation B is mapped to

A. The celestial sphere undergoes the corresponding conformal transformation,

which sends circles to circles. Thus A also describes a circular disc on the

celestial sphere of O.

4.2 Zero Rest Mass Fields

Definition 4.38. The helicity operator h on a particle state is defined as the

projection of the spin operator s along the direction of the momentum operator

p. Mathematically we write h = (p.s)/|p|.

Remark 4.39. Helicity is a good quantum number for massless fields, since we

cannot boost to a frame which changes the sign of the momentum.

Definition 4.40. We define the Weyl equations for spinor fields ψR, ψL on

M by

σµ∂µψR = 0 and σµ∂µψL = 0

where σµ = (1, σi) and σµ = (1,−σi). These describe massless non-interacting

fermion fields.

Lemma 4.41. ψR has helicity +1/2 and ψL has helicity −1/2.

Proof. Fourier transforming the first equation we obtain

σipiψR(p) = EψR(p)
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Since m = 0 we have E = |p| and thus

(σ.p)/|p|ψR(p) = ψR(p)

Recall that for spin 1/2 particles we define S = σ/2 whence

hψR(p) =
1

2
ψR(p)

as required. The negative helicity case follows similarly.

Lemma 4.42. The Weyl equations may equivalently be written

∇AA′α
A = 0 and ∇AA

′

βA′ = 0

where αA has helicity −1/2 and βA′ has helicity +1/2.

Proof. By convention we choose α = ψL ∈ S and β = ψR ∈ S
′∗. Now recall

that ∇AA
′

=
∑
σa∇a and ∇AA′ =

∑
σa∇a. The result follows easily.

Definition 4.43. We define Maxwell’s equations for a bivector field F on

M by

dF+ = 0 and dF− = 0

where F+ is the SD and F− the ASD part of F . These describe a massless

non-interacting source-free electromagnetic field.

Remark 4.44. We note without proof that F+ describes a field of helicity +1,

while F− describes a field of helicity −1. For a full development of the interac-

tion between duality and helicity, see Bialynicki-Birula et al. [6].

Lemma 4.45. Maxwell’s equations may equivalently be written

∇AA
′

ϕAB = 0 and ∇AA
′

ϕA′B′ = 0

where ϕAB has helicity −1 and ϕA′B′ has helicity +1.

Proof. An easy calculation shows that Maxwell’s equations are equivalent to

∇aF+
ab = 0 and ∇aF−ab = 0

Now write Fab = ϕABεA′B′ + ϕA′B′εAB and ∇a = ∇AA
′

and we’re done.

Definition 4.46. We define the zero rest mass (ZRM) equations for sym-
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metric valence n spinor fields ϕA...B and ϕA′...B′ on M by

∇AA
′

ϕA...B = 0 for helicity −n/2

∇AA
′

ϕA′...B′ = 0 for helicity n/2

∇AA
′

∇AA′ϕ = 0 for helicity 0

Remark 4.47. Following Huggett and Tod [21, p. 31] we assume without proof

that these equations describe massless fields of the stated helicities. Indeed such

a viewpoint is well motivated by our results for the Weyl and Maxwell equations.

The diligent reader may wish to extend the proof of Lemma 4.41 to this general

case, referring to the classic paper of Bargmann and Wigner [4].

Lemma 4.48. ∇BA′∇
AA
′

= 1
2δ
A
B� in Minkowski space M .

Proof. For A = B the result is obviously true. Suppose A 6= B, taking wlog

A = 1 and B = 0. Then

∇BA′∇
AA
′

= ∇0A
′∇1A

′

= ∇00
′∇10

′

+∇01
′∇11

′

= ∇11
′

∇10
′

−∇10
′

∇11
′

which vanishes since partial derivatives commute in flat space.

Theorem 4.49. Suppose ϕA...K satisfies the ZRM equations. Then �ϕAB...K =

0. A similar result holds for positive helicity fields.

Proof. Using the previous lemma we find

0 = 2∇AA
′

ϕAB...K = 2∇MA
′∇AA

′

ϕAB...K = δAM�ϕAB...K = �ϕMB...K

which establishes the claim.

Lemma 4.50. The zero rest mass field equations ∇AA
′

ϕAB...C = 0 may equiv-

alently be written ∇MM
′ϕAB...C = ∇M ′(MϕAB...C).

Proof. By the antisymmetry of ε we have

0 = ∇AA
′

ϕAB...C = εMAεM
′
A
′

∇MM
′ϕAB...C

⇔ ∇M ′MϕAB...C = ∇M ′(MϕA)B...C

By definition ϕ is symmetric in its indices. Note that if a tensor is symmet-

ric in two overlapping groups of indices then it is symmetric in the union of

the groups, since every permutation is a product of transpositions. The result

follows immediately.
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4.3 Hertz Potentials

Lemma 4.51. Suppose ψM
′
...Q
′

F...K is a ZRM field in its (n− k) unprimed indices

and symmetric in its k primed indices. Then

ϕAB...K = ∇AM ′ . . .∇EQ′ψ
M
′
...Q
′

F...K

defines a ZRM field with n indices.

Proof. Since we working in Minkowski space the derivatives commute, so ϕAB...K

is certainly symmetric in A . . . E. But by the previous lemma ϕAB...K is sym-

metric in E . . .K, so ϕAB...K is totally symmetric. Moreover

2∇AA
′

ϕAB...K = 2∇AA
′

∇AM ′ . . .∇EQ′ψ
M
′
...Q
′

F...K

= ∇BN ′ . . .∇EQ′δ
A
′

M
′�ψM

′
...Q
′

F...K = 0

using Lemma 4.48 and Theorem 4.49.

Theorem 4.52. Let ϕAB...K be a ZRM field with n indices. Fix k ≤ n. Then

locally there exists a spinor field ψM
′
...Q
′

F...K satisfying

1. ψM
′
...Q
′

F...K is a ZRM field in its (n− k) unprimed indices

2. ψM
′
...Q
′

F...K is symmetric in its k primed indices

3. ϕAB...K = ∇AM ′ . . .∇EQ′ψ
M
′
...Q
′

F...K

We call ψM
′
...Q
′

F...K a Hertz potential for ϕAB...K .

Proof. We do the case k = 1, then the general result follows inductively. Fix a

point x ∈ M and a constant spinor field µM
′

in a neighbourhood of x. Wlog

work in a trivialisation for S ′ such that µM
′

= (1, 0). For convenience define

uA = xA0
′

and vA = xA1
′

so that µM
′

∇AM ′ = ∂/∂uA. With this notation the ZRM equations in the form

of Lemma 4.50 become

∂

∂uY
ϕAB...K −

∂

∂uA
ϕY B...K = 0 (?)

∂

∂vY
ϕAB...K −

∂

∂vA
ϕY B...K = 0

Now (?) states that 2-dimensional curl of ϕAB...K in the variables uA vanishes.

Therefore there exists a local potential χB...K defined in some neighbourhood
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of x such that

ϕAB...K =
∂

∂uA
χB...K = µM

′

∇AM ′χB...K (†)

We set ψM
′

B...K = µM
′

χB...K . Since ϕAB...K is symmetric, certainly χB...K is

symmetric. It remains to show that χB...K can be chosen to satisfy the ZRM

equations. The symmetry of ϕAB...K immediately implies

∂

∂uA
χBC...K −

∂

∂uB
χAC...K = 0 (�)

We also easily obtain

∂

∂uB

(
∂

∂vY
ψAC...K −

∂

∂vA
ψY C...K

)
= 0

so the bracketed term θY AC...K depends only on the variables vA. Thus redefin-

ing ψ0C...K 7−→ ψ0C...K −
∫
θ10C...Kdv

1 does not affect (�) or (†) and we may

check
∂

∂v1ψ0C...K −
∂

∂v0ψ1C...K = θ10C...K − θ10C...K = 0

as required.

Remark 4.53. The deduction of (†) from (?) is slightly nontrivial. For real

variables it is well-known that a vector field with vanishing curl has a scalar

potential over any simply connected region of spacetime. However, u1 = x10
′

is

a complex variable. Fortunately there is a suitable modification of the theorem

which works in our case. It only guarantees the existence of a potential on

regions of spacetime with vanishing second homotopy group. See Penrose [29,

p. 166] for details.

4.4 Conformal Invariance

We now exhibit an important property of the zero rest mass and Yang-Mills

equations, namely their invariance under angle-preserving transformations of

Minkowski space. This will provide ample motivation for accomodating the

concept of conformal invariance at the heart of twistor theory. Indeed, Penrose

and MacCallum [32] view a twistor as an element of a representation space for

the universal cover of the conformal group. We shall not pursue this intepre-

tation fully; nevertheless the role of conformal transformations is manifest in

§5.

Definition 4.54. A conformal map of pseudo-Riemannian manifolds is a

smooth map f : (M, g) −→ (N , h) such that f∗h = Ω2g for some smooth

function Ω :M−→ R. We call Ω2 the conformal factor.
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Lemma 4.55. A smooth map f : M −→ N of Riemannian manifolds is con-

formal iff it preserves angles between tangent vectors.

Proof. Let x ∈ M and choose X,Y ∈ TxM. Then the angle between them is

given by

cos θ =
gx(X,Y )√

gx(X,X)gx(Y, Y )

The angle between their pushforwards is given by

cos θ̃ =
hf(x)(f∗X, f∗Y )√

hf(x)(f∗X, f∗X)hf(x)(f∗Y, f∗Y )

=
(f∗h)x(X,Y )√

(f∗h)x(X,X)(f∗h)x(Y, Y )

=
Ω2gx(X,Y )

Ω2
√
gx(X,X)gx(Y, Y )

= cos θ

Restrict θ, θ̃ ∈ [−π, π) then both directions follow immediately.

Remark 4.56. Therefore conformal maps change infinitesimal scale while pre-

serving infinitesimal shape.

Definition 4.57. A (global) conformal transformation is a conformal dif-

feomorphism f : (M, g) −→ (M, g).

Remark 4.58. Conformal transformations are essentially coordinate changes

which preserve the metric components up to scale. In particular every isom-

etry is a conformal transformation.

Definition 4.59. A local conformal transformation of (M, g) is a confor-

mal diffeomorphism f : (U, g) −→ (V, g) where U and V are open subsets of

M.

Example 4.60 (Dilations and Inversions in Minkowski Space). LetM be Minkowski

space. Consider the diffeomorphism f : M −→M given by

f : x 7−→ kx

where k is a nonzero real constant. The metric η pulls back to k2η, so f is a

conformal transformation of M , called a dilation.

Let o denote the origin of M and p ∈M be arbitrary. Define

Mo = M \ {light cone at o}

Mp = M \ {light cone at p}
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Consider the diffeomorphism f : Mp −→Mo given by

f : x 7−→ p− x
(p− x)2

The metric η pulls back to (p− x)−4η, so f is a local conformal transformation

of M , called an inversion.

Theorem 4.61 (Liouville). Any local conformal transformation of Minkowski

space is the composition of inversions, dilations and Poincaré transformations.

Proof. Consider an infinitesimal local conformal transformation of Minkowski

space, and derive algebraic constraints on the parameters. The result quickly

follows. See Di Francesco et al. [8, p. 96] for details.

Remark 4.62. Since inversions are singular on a light cone, it is not always pos-

sible to extend a local conformal transformation to a global one. This is math-

ematically and physically inconvenient. We remedy this problem by defining a

conformal completion M̃ , in which every local conformal transformation has

a unique global extension.

It turns out that Minkowski space has a natural compactification which is

also a conformal completion. We present this construction in §5.3. We shall

avoid a detailed discussion of the ambiguities involved in defining a conformal

completion more generally, referring the interested reader to Geroch [15].

Definition 4.63. The conformal group of a manifold is the group of global

conformal transformations of its conformal completion.

Definition 4.64. A Weyl transformation or conformal rescaling is a con-

formal diffeomorphism id : (M, g) −→ (M, h).

Remark 4.65. Weyl transformations may be viewed as active rescalings of the

metric, independent of any coordinate change. Note that any conformal diffeo-

morphism f : (M, g) −→ (M, h) is the composition of a conformal transforma-

tion and a Weyl transformation.

Definition 4.66. Two metrics g and h on M are conformally equivalent if

there is a Weyl transformation (M, g) −→ (M, h), that is, if g = Ω2h for some

smooth Ω : M −→ R. This defines an equivalence relation on the set of all

metrics onM. An equivalence class is called a conformal class or conformal

metric.

Definition 4.67. A conformal structure on a pseudo-Riemannian manifold

is a choice of conformal metric.
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Remark 4.68. The conformal transformations are precisely those diffeomor-

phisms f : (M, g) −→ (M, g) which preserve the conformal structure.

Definition 4.69. Let (M, g) be pseudo-Riemannian and x ∈ M. The light

cone at x is the set of X ∈ TxM such that gx(X,X) = 0. The light cone

structure of M is the set of light cones at all x ∈M.

Theorem 4.70. Let M be a manifold of dimension n, and assume all met-

rics are Lorentzian. Specifying a conformal structure on M is equivalent to

specifying a light cone structure on M.

Proof. (⇒) Suppose that g and h are Lorentzian metrics in the same conformal

class. We show that they give rise to the same light cone structure. Write

h = Ω2g, for some Ω2 6= 0. Fix x ∈ M and X ∈ TxM. Then trivially

hx(X,X) = 0 iff gx(X,X) = 0 as required.

(⇐) Suppose that g and h are Lorentzian metrics giving rise to the same

light cone structure. We show that they lie in the same conformal class. Fix

x ∈ X and suppose gx(X,X) = 0 iff hx(X,X) = 0 for all X ∈ TxM . Let

{e1, . . . , en} be a g-orthonormal basis for TxM, with e1 g-timelike and ei g-

spacelike for i 6= 1. By assumption we have hjj = h(ej , ej) 6= 0 for all j.

Now fix any j, k ≥ 2 with j 6= k. For θ ∈ R consider the g-null vectors

V (θ) = e1 + ej cos θ + ek sin θ

By assumption we have

0 = h(V (θ), V (θ))

= h11 + hjj cos2 θ + hkk sin2 θ + 2h1j cos θ + 2h1k sin θ + hjk sin(2θ) (?)

Now taking θ = 0, π we get

0 = h11 + hjj + 2h1j = h11 + hjj − 2h1j

whence we conclude that h1j = 0 and hjj = −h11 for all j ≥ 2. Then (?)

becomes

hjk sin(2θ) = 0

whence hjk = 0 for all j 6= k with j, k ≥ 2. Now choosing Ω2(x) = h11 > 0 we

find that hµν = Ω2gµν at x. But h and g are tensors so this result is true in any

coordinate system. Since x was arbitrary, the proof is complete.

Remark 4.71. Clearly the forward implication holds for arbitrary metrics. The

backward direction can be proved for metrics of indefinite signature; see Ehrlich

[11] for details.
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Remark 4.72. This theorem rigorously explains the language of Ward and Wells

[39, p. 51].

Definition 4.73. An equation on a manifold (M, g) is conformally invariant

on U ⊂ M if it remains unchanged under the action of every local conformal

transformation with domain U .

Lemma 4.74. A Poincaré invariant field equation on Minkowski space (M,η)

is locally conformally invariant if every field ϕi has a conformal weight ri such

that the equation is unchanged under the conformal rescaling η 7−→ Ω2η with

ϕi 7−→ Ωriϕi ∀i.

Proof. Following a hint of Penrose and MacCallum [32, §1.1] we demonstrate

that the Poincaré transformations of Minkowski space become conformal trans-

formations according to any other conformally rescaled metric, and that the

conformal transformations obtainable in this way generate the full conformal

group C(1, 3). Then the result follows immediately from the assumptions of the

lemma.

Consider a conformally rescaled metric gx = Ω(x)ηx where Ω(x) is a smooth

positive function on M . An infinitesimal Poincaré transformation takes the form

xµ 7−→ x′µ = xµ + ωµνx
ν + εµ

where ωµν is an antisymmetric matrix. Under such a transformation Ω trans-

forms as

Ω′(x) = Ω(xµ − ωµνx
ν − εµ) = Ω(x)− ωµνx

ν∂µΩ(x)− εµ∂µΩ(x)

and so the metric changes by

δgx = −ηx(ωµνx
ν + εµ)∂µΩ(x)

which is certainly a conformal transformation with respect to g.

Now since g is conformally equivalent to η, there exists ϕ ∈ C(1, 3) such

that ϕ∗η = g. Hence the subgroup of C(1, 3) which fixes g is isomorphic to the

Poincaré group. Therefore C(1, 3) is generated by the Poincaré group and those

transformations which effect an arbitrary conformal rescaling with respect to

some conformally equivalent metric.

It only remains to show that we may choose Ω, ω and ε to make δg arbitrary.

Equivalently, given a smooth f : M −→ R we must find a solution to

f(x)2 = −(ωµνx
ν + εµ)∂µΩ(x)
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by varying Ω, ω and ε, which is always possible using the method of character-

istics.

Remark 4.75. It is immediately apparent that massive theories are not con-

formally invariant. For indeed a massive field must obey the Klein-Gordon

equation (� + m2)ϕ = 0. Now under a dilation η 7−→ k2η the D’Alembertian

transforms as � 7−→ k−2�, so clearly there is no appropriate conformal weight

unless m = 0.

Theorem 4.76. The zero rest mass field equations are conformally invariant

on any open subset of Minkowski space M .

Proof. Consider a conformal rescaling ηab 7−→ η̂ab = Ω2ηab. We are interested in

finding how the covariant derivative ∇AA′ transforms. Inspired by the identity

ηab = εABεA′B′ we choose

ε̂AB = ΩεAB , ε̂A′B′ = ΩεA′B′

Recall from §4.1 that we must have ∇̂AA′εBC = 0. Moreover the covariant

derivative of a scalar field f is independent of connection, so in particular

∇AA′f = ∇̂AA′f

Therefore the action of ∇̂AA′ − ∇AA′ on spinors ξC is Γ(M)-linear so we may

write

∇̂AA′ξ
C = ∇AA′ξ

C + ΓCAA′Bξ
B

Recall that we require ∇ and ∇̂ to be torsion free. This condition implies (cf.

Penrose and Rindler [33, p. 217])

ΓCAA′B = iΠAA
′εCB + ΥA

′
Bε

C
A

where Υa and Πa are real vector fields on M . Now we may calculate

0 = ∇̂AA′ ε̂BC = ∇̂AA′(ΩεBC)

= εBC(∇AA′Ω− 2iΩΠAA
′ − ΩΥAA

′)

by applying the defining properties of a connection. Rearranging we get

Ω−1∇aΩ = Υa + 2iΠa

Since Ω is real we must take Πa = 0 and Υa = Ω−1∇aΩ whence

ΓCAA′B = εCAΩ−1∇A′BΩ
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Then by the Leibniz rule we have

∇̂AA′ϕC...F = ∇AA′ϕC...F − ΓBAA′CϕBD...F − · · · − ΓBAA′FϕC...EB

= ∇AA′ϕC...F − Ω−1(∇A′CΩ)ϕAD...F − · · · − Ω−1(∇A′FΩ)ϕC...EA

Recall from Lemma 4.50 that we may write the ZRM equations as

∇AA′ϕC...F = ∇A′(AϕC...F )

Suppose ϕC...F has conformal weight −1. Then we find

∇̂AA′ ϕ̂C...F = ∇̂AA′(Ω
−1ϕC...F )

= ∇AA′(Ω
−1ϕC...F )− Ω−1(∇A′CΩ)Ω−1ϕAD...F − · · ·

−Ω−1(∇A′FΩ)Ω−1ϕC...EA

= Ω−1∇AA′ϕC...F − Ω−2(∇AA′Ω
−1)ϕC...F

−Ω−2(∇A′CΩ)ϕAD...F − · · · − Ω−2(∇A′FΩ)ϕC...EA

By construction the RHS less the first term is automatically symmetric in

{A,C, . . . F}. Therefore the ZRM equations hold for (∇, ϕ) iff they hold for

(∇̂, ϕ̂). The result for positive helicity fields ϕA′D′...F ′ follows similarly.

Remark 4.77. It is also possible to show that the wave equation is conformally

invariant, for which we refer the interested reader to Ward and Wells [39, p.

291].

Theorem 4.78. The anti-self-dual Yang-Mills equations are conformally in-

variant on any open subset of Minkowski space M .

Proof. We show that the Hodge star operator is conformally invariant. Let

Vabcd =
√
|det η|εabcd be the volume form of M , where ε the Levi-Civita symbol.

Under a conformal rescaling η 7−→ Ω2η we have V 7−→ Ω4V . Now recall

(∗F )µν =
1

2
Vµνρση

ρτησυFτυ

so ∗F remains unchanged under a conformal rescaling.

Remark 4.79. In fact it’s easy to show that the full Yang-Mills equations are

conformally invariant, but we shall not consider these here. See Ward and Wells

[39, p. 292] for details.

53



4.5 Twistors From Dynamics

Definition 4.80. Let xa(t) be a particle trajectory in M , parameterised by

coordinate time t. We define the particle 4-momentum by

pa = (E,p), p ∝ ẋ(t), p2 = E2 −m2

where m denotes the particle mass. We define the particle orbital angular

momentum by

Jab = pa ∧ xb

We define the particle total angular momentum by

Mab = Jab + Sab

where Sab denotes the particle spin angular momentum.

Lemma 4.81. Let ua and va be two orthogonal null vectors. Then ua = kva

for some k ∈ R.

Proof. Work in coordinates where ua = (A, 0, 0, A) and va = (B,p). Then

uava = 0 yields p3 = B, so p1 = p2 = 0. Choose k = A/B.

Definition 4.82. The Pauli-Lubanski vector is defined by

Sa = (∗M)abpb

Lemma 4.83. For a massless particle Sa = hpa where h is the particle helicity.

Therefore the Pauli-Lubanski vector classically encodes the helicity of a massless

particle.

Proof. Observe that

S0 = S.p = h|p| = hE

We easily check that Sa and pa are orthogonal null vectors, and the result follows

by the previous lemma.

Lemma 4.84. Consider a massless particle with momentum pa and total an-

gular momentum Mab. Write pa = πAπA′ and Mab = µABεA′B′ + µA′B′εAB .

Then there exists a spinor ωA such that µAB = −iω(AπB).

Proof. In spinor notation the Pauli-Lubanski vector becomes

SDD′ = −iπDπ
A
′

µA′D′ + iπAµADπD′ = hπDπD′
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using the previous lemma. Contracting both sides with πD gives

µABπ
AπB = 0

Now µAB is a symmetric spinor, so by Lemma 4.31 it factorises as

µAB = α(AβB)

Substituting we find

αAβBπ
AπB = −αBβAπ

AπB

⇒ αAβBπ
AπB = 0

wlog⇒ βB ∝ πB

and the result follows.

Definition 4.85. Let xa describe a massless particle, with (pa,Mab) encoded

by the spinor pair (ωA, πA′). We call (ωA, πA′) a twistor and denote it Zα for

α = 0, 1, 2, 3. We define the dual twistor Zα = (πA, ω
A
′

).

Remark 4.86. Under the formal twistor correspondence of §5 the reader may

check that the change in Zα effected by a change in origin of M is consistent

with the changes in Mab and pa viz.

xa 7−→ xa + qa

pa 7−→ pa

Mab 7−→Mab + paqb − pbqa

Lemma 4.87. A twistor Zα also encodes the helicity of a massless particle via

h =
1

2
ZαZ

α

Proof. Substituting we verify that

SDD′ = −iπDπ
A
′ (
iω(A

′πD′)

)
+ iπAπD′

(
−iω(AπD)

)
=

1

2
πDπD′

(
ωA′π

A
′

+ ωAπ
A
)

=
1

2
πDπD′Z

αZα

and the result follows.
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5 Twistor Geometry

In §4.5 we tentatively defined a twistor as a complex quantity encoding the

momentum, angular momentum and helicity of a massless particle. Although

this perspective is physically valuable, we shall now pursue a more powerful

abstract approach.

In this section we see that twistors form a complex twistor space related

to Minkowski space according to simple rules. The translation of geometrical

objects between these two perspectives is known as the twistor correspondence.

Although this is easy to notate, it is conceptually challenging.

We start with an informal discussion of twistors and their relation to Minkowski

space. We develop a baby version of the twistor correspondence, good enough

for most applications, but slightly imprecise. To establish a geometrical intu-

ition we describe a concrete interpretation in terms of Robinson congruences.

We then move towards a fuller account of the twistor correspondence. We

conformally compactify Minkowski space, and discuss the role of flag manifolds.

Finally we regain the baby version of our results by choosing an appropriate

coordinate chart. This material is not immediately essential, so the reader may

omit it, referring back when necessary later in the text.

5.1 The Baby Twistor Correspondence

Definition 5.1. Twistor space T is a 4-dimensional complex vector space

with elements Zα (α = 0, 1, 2, 3) and a Hermitian inner product

Σ(Z,W ) = Z0W 2 + Z1W 3 + Z2W 0 + Z3W 1

with respect to some fixed basis. Each element Zα ∈ T is called a twistor.

We coordinatise T by a pair of spinors according to the isomorphism

T = S ⊗ S′

writing Zα = (ωA, πA′).

We identify the dual twistor space T ∗ with the conjugate twistor space T

via Zα = ΣαβZ
β so that Σ(Z,W ) = ZαWα. Explicitly we have

Z0 = Z2, Z1 = Z3, Z2 = Z0, Z3 = Z1

so that Zα = (πA, ω
A
′

).

Remark 5.2. Recall that a Hermitian form is determined by its signature up to

change of basis. It is not hard to verify that Σ has neutral signature (++−−).
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This explains the language of Ward and Wells [39, p. 52].

Definition 5.3. We divide T into regions T+, T− andN accordingly as Σ(Z,Z) >

0, < 0 and = 0. A twistor Zα ∈ N is called null.

Remark 5.4. Observe that these are well-defined since the quadratic form in-

duced by a Hermitian form is always real.

Definition 5.5. Let A and B be sets. A correspondence C : A −→ B is an

assignment to each point a ∈ A a subset C (a) ⊂ B. We say that a ∈ A and

b ∈ B are incident iff b ∈ C (a) or equivalently a ∈ C−1(b). The correspondence

C is hence also called an incidence relation.

Definition 5.6. Complexified Minkowski space CM is the complexification

of M equipped with the complex-linear extension of η.

Definition 5.7. Projective twistor space PT is the projectification of T . We

call elements of PT projective twistors, but occasionally abuse nomenclature

by referring to them simply as twistors.

Definition 5.8. We define the twistor correspondence C : CM −→ T by

specifying that a twistor Zα = (ωA, πA′) is incident with a spacetime point

xa = xAA
′

iff

ωA = ixAA
′

πA′

Note immediately that this descends to a correspondence C : CM −→ PT ,

which we shall also refer to as the twistor correspondence.

Conjugating and using the identification of T with T ∗ we obtain a dual

correspondence. Explicitly, xAA
′

is incident with Zα = (ωA, π
A
′

) iff

πA
′

= −ixAA
′

ωA

Definition 5.9. A surface S in a (complexified) spacetimeM is called totally

null if every tangent vector to S is null.

Definition 5.10. An α-plane in CM is a totally null 2-plane such that every

tangent bivector is self-dual.

Theorem 5.11. Let [Zα] = [ωA, πA′ ] ∈ PT . C−1([Zα]) is an α-plane in CM .

Proof. Suppose xAA
′

∈ C−1([Zα]). Then

C−1([Zα]) = {xAA
′

+ yAA
′

: iyAA
′

πA′ = 0}

For fixed A the equation yAA
′

πA′ = 0 implies that yAA
′

∝ πA
′

. Therefore the

most general solution is iyAA
′

= λAπA
′

for arbitrary λA, whence

C−1([Zα]) = {xAA
′

+ λAπA
′

: λA ∈ S}
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Clearly this defines a 2-plane P in CM . Moreover λAπA
′

is a rank-1 matrix, so

every tangent to P is null. Finally consider a general tangent bivector

FAA
′
BB
′

= λAπA
′

λ̃BπB
′

− λAπB
′

λ̃BπA
′

− λBπA
′

λ̃AπB
′

+ λBπB
′

λ̃AπA
′

The first two terms cancel by symmetry of πA
′

πB
′

leaving

FAA
′
BB
′

= πB
′

πA
′

λ[Bλ̃A] = kπA
′

πB
′

εAB

for some k ∈ C, so FAA
′
BB
′

self-dual as required.

Remark 5.12. A similar argument shows that a point in PT ∗ corresponds to a

totally null ASD 2-plane in CM , called a β-plane.

Lemma 5.13. Let xAA
′

∈ CM . C (xAA
′

) = P1 ⊂ PT , a projective line.

Proof. C (xAA
′

) = {[ωA, πA′ ] ∈ PT : ωA = ixAA
′

πA′} is completely determined

by {[πA′ ] : πA′ ∈ S
′∗ = C2}.

Remark 5.14. We can therefore summarise the twistor correspondence geomet-

rically as follows

CM ←→ PT

point xa ←→ projective line P1

α-plane ←→ point [Zα]

By applying the correspondence both ways we also see

2 points lie on same α-plane ←→
2 projective lines intersect

in a projective twistor

Unfortunately these relations do not clearly elucidate the relationship between

PT and real Minkowski space M . We now consider this problem seriously.

5.2 Robinson Congruences

Lemma 5.15. If Zα = (ωA, πA′) is a null twistor then the corresponding α-

plane contains some real point xAA
′

0 .

Proof. The condition ZαZα = 0 may be written

ωAπA = −ωA
′

πA′ = −ωAπA (?)
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We therefore have ωAπA = ia for some a ∈ R. Suppose a 6= 0. Set xAA
′

0 =

a−1ωAωA
′

which is Hermitian, so xa0 is real. We now check

ixAA
′

0 πA′ = ia−1ωAωA
′

πA′ = (−ia)ia−1ωA = ωA

as required. If a = 0 we change the origin of CM so that the incidence relation

becomes

ωA = i(xAA
′

− yAA
′

)πA′

for some fixed yAA
′

. The α-plane in M which was defined by Zα is now defined

by Z̃α = (ω̃A, πA′) with ω̃A = ωA + iyAA
′

πA′ . Choose yAA
′

such that

ω̃AπA = iyAA
′

πA′πA 6= 0

and we are done by the a 6= 0 case.

Theorem 5.16. A null twistor corresponds to an α-plane whose real points

define a null geodesic of M .

Proof. Let Zα = (ωA, πA′) be a null twistor and xAA
′

0 be a real point on the

corresponding α-plane. By Theorem 4.21

{xAA
′

0 + rπAπA
′

: r ∈ R}

defines a null geodesic of M , which clearly lies within the α-plane defined by

Zα. Conversely suppose xAA
′

1 is another real point. Then

0 = (xAA
′

1 − xAA
′

0 )πA′

so for fixed A we have (xAA
′

1 − xAA
′

0 ) ∝ πA
′

whence xAA
′

1 − xAA
′

0 = λAπA
′

for

some λA. Suppose {oA
′

, πA
′

} form a dyad. We must have λAπA
′

Hermitian so

λAπA
′

= λ
A
′

πA

whence λA = λ
A
′

πAoA′ . Contracting both sides with πA shows λA ∝ πA.

Lemma 5.17. If xAA
′

0 ∈ M is a real point, then all corresponding twistors

Zα = (ωA, πA′) are null.

Proof. The incidence relation yields

ωAπA = ixAA
′

0 πAπA′

and (?) immediately follows.
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Theorem 5.18. Two null geodesics in M meet iff their corresponding twistors

Xα and Y α satisfy XαYα = 0.

Proof. This involves algebraic manipulations similar to those above, so we omit

it. An argument may be found in Huggett and Tod [21, p. 56].

Corollary 5.19. The null cone at a point p ∈ M corresponds to a projective

line Lp = P1 ⊂ PN .

Proof. Let Xα and Y α be distinct twistors corresponding to fixed null geodesics

through p. Suppose Zα corresponds to an arbitrary null geodesic through p. By

the previous theorem we must have

ZαZα = 0 , ZαXα = 0 , ZαYα = 0 (†)

Certainly these conditions are satisfied for all Zα = ζXα + ηY α where ζ, η ∈ C.

Moreover this is the general solution for Zα since the second and third equations

in (†) define a 2-dimensional complex subspace of T . Now projectifying the

construction yields the result.

Remark 5.20. Explicitly the line Lp thus constructed is nothing but

{[ωA, πA′ ] ∈ PT : ωA = ipAA
′

πA′}

as usual. The new information is that

C−1(Lp) ∩ R = {null cone at p}

Remark 5.21. We may summarise our geometrical findings as follows

M ←→ PN

null cone at p ←→ projective line Lp = P1

null geodesic through p ←→ point [Zα] on Lp

two points p and q

are null separated
←→

two lines Lp and Lq

intersect at a point

We naturally interpret Lp as the celestial sphere of an observer at p.

Remark 5.22. Heuristically it might be convenient to regard twistor space as

fundamental when quantising spacetime. Introducing small scale quantum be-

haviour in PT does not affect the null cone structure of M , which is determined

by global lines of PT . This ensures that causality is not violated. Instead the

points of M themselves are subject to quantum uncertainty. This approach has

particular merit in curved spacetimes, cf. Penrose and MacCallum [32].

60



Definition 5.23. A null geodesic congruence Γ through a region U of M

is a set of null geodesics, one through each point of U .

Lemma 5.24. Suppose Rα is a twistor corresponding to a null geodesic R ⊂M .

Then Rα determines a null geodesic congruence through R.

Proof. Let Γ = C−1 ({Xα ∈ N : RαX
α = 0}). Then Γ defines a null geodesic

congruence through R by Theorem 5.18.

Remark 5.25. We now have a natural geometrical interpretation of dual null

twistors. We may picture a generic dual twistor in PT ∗ by extending this argu-

ment. This provides the most tangible visual representation of a general twistor,

and inspired the nomenclature.

Example 5.26. Given Rα in PT ∗ with RαRα 6= 0 we define the Robinson

congruence of Rα by

Γ = C−1 ({Xα ∈ PT : RαX
α = 0})

LetXα = (ωA, πA′) ∈ PT satisfyRαX
α = 0. We are interested in visualising the

locus X of real points on the α-plane defined by Xα. As usual we coordinatise

X by (t, x, y, z) writing

xAA
′

=
1√
2

(
t+ z x+ iy

x− iy t− z

)

Following Penrose [30] we describe a particular case of the general construction,

noting that all Robinson congruences are related by Poincaré transformations.

Write Rα = (AA, A
A
′

) then (iAAx
AA
′

+AA
′

)πA′ = 0 whence

πA
′

= k(iAAx
AA
′

+AA
′

)

for some k ∈ C. Let 0 6= r ∈ R and choose

Rα = (0,
√

2, 0,−r)

so that RαR
α = −2r

√
2 6= 0. Then in particular we have

πA′ = ik(x− iy, t− z + ir)

Now the tangent vector to X at (t, x, y, z) is given by

TAA
′

= πAπA
′

= |k|2
(

x2 + y2 (x+ iy)(t− z + ir)

(x− iy)(t− z − ir) (t− z)2 + r2

)
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which corresponds to the vector

T a =
|k|2√

2


x2 + y2 + (t− z)2 + r2

2x(t− z)− 2yr

2y(t− z) + 2rx

x2 + y2 − (t− z)2 − r2


The locus X is now given by the integral curves xa(s) of T a in M , namely

dxa

ds
= T a

For simplicity of visualisation we project X onto a hyperplane of constant t = τ .

Taking the parameter s = (x2+y2+z2)
1
2 the reader may verify that the projected

integral curves are given by

x2 + y2 + (τ − z)2 − 2r(x cosϕ− y sinϕ) tan θ = r2 (?)

(τ − z) = (x sinϕ+ y cosϕ) tan θ (†)

for some real constants ϕ and θ. Eliminating ϕ and setting ρ = x2 + y2 we

obtain

(ρ− r sec θ)2 + (τ − z)2 = r2 tan2 θ (�)

Now (?) describes a sphere and (†) a plane cutting the sphere. Thus the integral

curves are circles. These circles, for varying ϕ but constant θ, lie on the surface

defined by (�), which is a torus. For varying θ, we have a family of coaxial tori.

The geometry is pictured in Penrose [31, §8].

Observe that the circles twist around the tori, each one linking with all the

others. This immediately makes sense of the term ‘twistor’. Interestingly, one

can identify these circles with the fibres of the Hopf bundle over S2. See, for

example, Urbantke [37, §5].

Remark 5.27. Recall that every point in CM corresponds to a projective line

P1 in PT . We may gain an important new perspective on CM by geometrically

classifying the set of all such lines in PT . This will complete our analysis of the

twistor correspondence.

Definition 5.28. A quadric in Pn is the projective variety defined by the

vanishing of a quadratic form Q(X) = aijX
iXj in the homogeneous coordi-

nates {X0, . . . Xn}. A quadric is non-degenerate if Q is non-degenerate, or

equivalently if aij is invertible.

Lemma 5.29. Let Fab ∈
∧2

V with dim(V ) = 4. Then Fab is simple iff

εabcdFabFcd = 0
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Proof. The forward direction is trivial. Conversely an elementary yet tedious

calculation in components suffices.

Example 5.30. Let L be the space of lines in PT . An element ` ∈ L can be

uniquely represented by two points [Xα] and [Y β ] on `. We may combine these

to obtain a bivector Pαβ = X [αY β]. Clearly this is only defined up to scale for

any given line. We therefore have an injection

ϕ : L −→ P
(∧2

T

)
= P5

The image of ϕ is precisely the simple bivectors. By the previous lemma we

may equivalently write

im(ϕ) = {[Fab] ∈ P5 : εabcdFabFcd = 0}

Hence im(ϕ) defines a quadric in P5, called the Klein quadric Q. Under the

twistor correspondence every x ∈ CM defines a line `x ∈ PT . Therefore we

might hope to identify Q with CM in some way. To accomplish this rigorously

we need to conformally compactify spacetime.

5.3 Conformal Compactification

In §4.4 we saw that Minkowski spacetime was conformally incomplete. It is

therefore convenient to embed Minkowski space in a compact and conformally

complete manifold before studying global theories. In this section we construct

conformally compactified Minkowski space, and relate it to the Klein quadric of

§5.2. We see that complexified conformally compactified Minkowski space is the

natural arena for the twistor correspondence, motivating the formal approach

followed in §5.4.

Definition 5.31. Let P be a 2-plane in a flat real manifold with metric g of

indefinite signature. Then P has at most two independent null directions. We

say that P is a null plane if it has exactly one null direction.

Remark 5.32. Note the subtle difference to Definition 5.9 of a totally null plane.

Lemma 5.33. Let U be null and V non-null in the null 2-plane P . Then

U.V = 0. If V is spacelike then all non-null vectors in P are spacelike.

Proof. Note that U and V span P . Since U is the unique null direction we

must have

0 6= (aU + bV)2 = 2abU.V + b2V2
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for all a, b ∈ R with b 6= 0. Therefore U.V = 0. If V is spacelike then a general

non-null vector has norm squared

(aU + bV)2 = b2V2 < 0

so is spacelike, as required.

Lemma 5.34. Let P and P ′ be null 2-planes with common null vector U, each

containing a spacelike vector. Define the angle θ between P and P ′ to be the

angle between any non-null vectors, one in each plane. Then θ is well-defined.

Proof. Let V and W be distinguished spacelike vectors in P and P ′ respectively.

Certainly the angle θ between V and W is well-defined. Let aU+bV, cU+dW

be general non-null vectors in each plane, with b, d 6= 0. Then these are spacelike

by the previous lemma, so the angle θ̃ between them is well-defined. We calculate

(aU + bV).(cU + dW) = bdV.W

and note that (aU + bV) = b2V2, (aU + dW) = d2W2. Now it is immediate

that cos θ = cos θ̃.

Construction 5.35. Let E be a real six dimensional manifold with a preferred

coordinate chart

A = (T, V,W,X, Y, Z)

and metric components

g = diag(+1,+1,−1,−1,−1,−1)

Let N be the light cone of the origin, in other words

N = {A ∈ E : g(A,A) = 0}

Since N is defined by a homogeneous polynomial we may projectify to obtain

PN ⊂ P5, a closed subset of a compact space, so compact. Moreover PN is

four-dimensional. Note that PN is a quadric in the sense of Definition 5.28.

The metric on E induces a conformal metric on PN . Indeed we may choose

representatives for PN by intersecting N with any spacelike hypersurface not

through 0. Let S and S′ be two such hypersurfaces cutting the future null cone

N+. We show that the induced metrics on S ∩N and S′ ∩N are conformally

equivalent.

We follow a beautiful argument of Penrose and Rindler [33, p. 38]. Consider

three infinitesimally close lines in N , say `i for i = 1, 2, 3. Let si be an arbitrary
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point on `i in the future null cone N+. Let sij be the infinitesimal spacelike

lines defined by the pairs {si, sj} of distinct points. Let Pij be the null 2-planes

through 0 containing sij . Note that Pij depend only on the lines `i not on the

choice of points si.

Now let si and s′i be defined by the intersection of S and S′ with `i. Then

{si} and {s′i} define infinitesimal triangles on N , whose angles are determined

by the induced metrics on S ∩ N and S′ ∩ N respectively. If these triangles

are similar then we may conclude that the metrics are conformally equivalent.

But this is immediate from Lemma 5.34 and our arguments in the previous

paragraph.

Let g̃ be the induced conformal metric on PN . Then we call (PN, g̃) com-

pactified Minkowski space, and denote it M c.

Theorem 5.36. Define a smooth map ϕ : M −→ E by

Xa 7−→ (X0,
1

2
(1−XbXb),−

1

2
(1 +XbXb), X

1, X2, X3)

Then im(ϕ) = N ∩ Z where Z = {A ∈ E : V −W = 1}. Hence ϕ defines an

isometric embedding of M into N .

Proof. Trivially we check

ϕ(Xa)2 = XbXb −
1

4
(1−XbXb)

2 +
1

4
(1 +XbXb)

2 = XbXb −X
bXb

so im(ϕ) ⊂ N . Also by definition im(ϕ) ⊂ Z. For surjectivity, suppose

(T, V,W,X, Y, Z) ∈ Z ∩N

and Xa = (T,X, Y, Z). Then

1

2
(1−XbXb) =

1

2
(1− T 2 +X2 + Y 2 + Z2) =

1

2
(1−W 2 + V 2) = V

and similarly for W . Injectivity is obvious, and isometry follows since dV = dW

on Z, so g reduces to the Minkowski metric.

Corollary 5.37. As a set M c is Minkowski space together with an extra null

cone and 2-sphere.

Proof. Suppose ` is a null line generating N , that is ` ∈ PN . If V −W 6= 0 on

` then there is exactly one point in `∩Z. Hence M conformally embeds in PN .

Consider the remaining points of PN , precisely the set PK for K = {A ∈
N : V −W = 0}. Then

PK = PS ∪ PC
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where C = {A ∈ N : V = W 6= 0} and S = {A ∈ N : V = W = 0}.
Every element of PC may be uniquely represented by a point A ∈ N with

V = W = 1. Therefore

PC = {(T,X, Y, Z) : T 2 −X2 − Y 2 − Z2 = 0}

has the structure of the null cone in M .

In homogeneous coordinates we may write

PS = {[T : X : Y : Z] : T 2 −X2 − Y 2 − Z2 = 0}

Clearly we must have T 6= 0. Thus every element of PS may be uniquely

represented by a point A ∈ N with V = W = 0 and T = 1. This identifies PS
with S2.

Remark 5.38. Huggett and Tod [21, p. 36], fail to mention the extra copy of

S2, as noted in Jadcyzk [24].

Theorem 5.39. M c is a conformal completion of M .

Proof. By Liouville (Theorem 4.61) it suffices to exhibit a global conformal

transformation of M c which has the form of an inversion when restricted to

M \ {null cone of 0}. Let f : PN −→ PN be a reflection in the plane V = 0.

Clearly this is a conformal transformation of M c. Moreover taking ∆ = XbXb

and using homogeneous coordinates we have

f ◦ ϕ(Xa) = [X0 : −1

2
(1−∆) : −1

2
(1 + ∆) : X1 : X2 : X3]

= [X0/∆ :
1

2
(1− 1/∆) : −1

2
(1 + 1/∆) : X1/∆ : X2/∆ : X3/∆]

= ϕ ◦ g(Xa)

where g(Xa) = Xa/(XbXb) is the inversion map.

Remark 5.40. Note that f maps the null cone at 0 to the extra null cone PC.

For this reason we often regard PC is being at infinity. Alternative approaches

to compactification identify PK with the boundary of Minkowski space, so it is

natural to place PS at infinity also. See, for example, Penrose and Rindler [34].

Definition 5.41. Complexified compactified Minkowski space is the

complexified space CPN with the induced metric from (CE, g). We denote

it by CM c or M.

Theorem 5.42. Complexified compactified Minkowski space is diffeomorphic

to the Klein quadric.
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Proof. Let
∧2

T be the 6-dimensional space of bivectors of T , with coordinates

Pαβ . Recall that the Klein quadric is the subspace of P5 defined by the homo-

geneous equation

P 12P 34 − P 13P 24 + P 14P 23 = 0 (?)

It suffices to exhibit coordinates (T, V,W,X, Y, Z) for
∧2

T such that (?) be-

comes

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0

Indeed we may choose P 12 = (T + X), P 34 = (T − X), P 14 = (V + W ),

P 23 = (V −W ), P 13 = (Y + iZ), P 24 = (Y − iZ) and the proof is complete.

Remark 5.43. Recall that in §5.2 we identified that Klein quadric with the space

of lines in PT , which is precisely the Grassmanian of 2-planes in T . We may

hence regard M as this Grassman manifold. This provides a more abstract

perspective on the twistor correspondence, which we now articulate.

5.4 The Formal Twistor Correspondence

Definition 5.44. We define the Grassmanian of k-planes in Cn by

Gn,k = {k-dimensional subspaces of Cn}

Lemma 5.45. Gn,k is a manifold of dimension (n− k)× k.

Proof. Let Cn×k∗ be the set of (n × k) matrices of maximal rank. Define a

mapping

[ ] : Cn×k∗ −→ Gn,k

by taking [m] to be the span of the columns of m. We think of m as a homoge-

neous coordinate for Gk,n, generalising the case G1,n = Pn. Define a coordinate

chart ϕ1 : C(n−k)×k −→ Gn,k by

ϕ1(Z) =

[(
iZ

Ik

)]

where Ik denotes the (k× k) identity matrix. Simple topological considerations

demonstrate that ϕ1 is a homeomorphism. We obtain the remaining coordi-

nate charts combinatorically, by permuting the rows in the image of ϕ1. This

operation can be realised as the action of an element of GL(n,C), so the transi-

tion functions are biholomorphic. Thus we have endowed Gn,k with a manifold

structure.

Remark 5.46. Recall from §5.3 that we may regard M as the Grassmanian of

67



2-planes in T . We introduce the notation MI = ϕ1(C2×2) ⊂ M and wlog

identify MI with CM . Symbolically MI represents M with the points I at

infinity removed. Explicitly we write

ϕ1(xAA
′

) =

[(
ixAA

′

I2

)]

Definition 5.47. View M as the Grassmanian of 2-planes in T , and write

P = PT . Define the correspondence space by

F = {(V1, V2) : Vi subspaces of T of dimension i and V1 ⊂ V2}

There are natural projection maps µ : F −→ P and ν : F −→ M defining the

double fibration

F

P M

µ ν

We define the twistor correspondence C : M −→ P by C = µ ◦ ν−1. We

denote ν−1(MI) = FI and C−1(MI) = PI .

Theorem 5.48. We may endow F with the structure of the projective dual

primed spin bundle PS ′∗ over M.

Proof. We exhibit a local trivialisation

ψ : MI × P1 −→ FI

Taking coordinates xAA
′

on MI and [πA′ ] on P1 we define

ψ(xAA
′

, πA′) =

([
ixAA

′

πA′

πA′

]
,

[
ixAA

′

I2

])

Now extending Lemma 5.45 we may regard F as a manifold and verify that ψ has

the appropriate properties. The details are messy and unimportant, so we leave

them to the diligent reader. Finally we construct the remaining trivialisations

using the combinatorial arguments of Lemma 5.45.

Remark 5.49. In coordinates [ωA, πA′ ] on PI and xAA
′

on MI the double fibra-
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tion may explicitly be written

([
ixAA

′

πA′

πA′

]
,

[
ixAA

′

I2

])

[
ixAA

′

πA′ , πA′
]

xAA
′

This demonstrates that the twistor correspondence of Definition 5.47 is a formal

generalisation of Definition 5.8, as we might hope.

Remark 5.50. Defining F = CM × (S′∗ \ {0}) we obtain a double fibration

F

T \ {0} CM

given explicitly by the formulae in the previous remark, without projectification.

Although this perspective is only valid locally, it suffices for many calculations.

Moreover it is notationally and conceptually easier than our earlier version. We

employ this approach frequently in §6.

Remark 5.51. We define F+ and F− analogously to F+ and F−.
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6 Twistor Transforms

In this final section we draw together the disparate threads explored above.

Twistor transforms admit study from a variety of different perspectives, of which

we introduce the most intuitive. Broadly speaking, a twistor transform relates

fields defined on Minkowski space with functions or bundles on twistor space. By

choosing our language correctly we can promote this relationship to a bijection.

We then have the freedom to translate problems between these two perpectives

to find novel means of solution.

We begin by considering the integral formulae mentioned in §1.1. We see that

twistor functions naturally encode solutions to the ZRM equations on Minkowski

space, a striking result. Motivated by a desire to invert the Penrose transform,

we turn to the power of sheaf cohomology. A precise interpretation swiftly

emerges.

We conclude the section by exploring a nonlinear generalization of the Pen-

rose transform due to Ward [38]. We see that the anti-self-dual solutions of

the Yang-Mills equations can be classified in terms of vector bundles on twistor

space. The ASD condition on a gauge field is naturally expressed as a com-

patibility condition for overlapping trivialisations. This philosophy has natural

applications to theories of instantons and monopoles, which we allude to in §7.

6.1 Integral Formulae

Definition 6.1. A twistor function is a function f(Zα) on twistor space.

Definition 6.2. We define the future tube of complexified Minkowski space

by

CM+ = C−1(T+)

Remark 6.3. Recall that in quantum field theory we discard negative frequency

fields, for they correspond to unphysical negative energy particles. Therefore we

are most interested in solving the ZRM equations for positive frequency fields.

Following Hughston and Ward [22, p. 21] we note without proof that a field

ϕA...B on Minkowski space is of positive frequency if it can be extended to the

forward tube CM+ by analytic continuation. Using hyperfunctions one may

obtain the converse statement also, cf. Bailey et al. [3]. Motivated by this, we

shall seek solutions of the ZRM equations defined on CM+.

Theorem 6.4. Recall the helicity n/2 ZRM equations for a valence n spinor

field ϕA′...B′ , namely

∇AA
′

ϕA′...B′ = 0
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These have solutions on CM+ given by

ϕA′...B′(x) =
1

2πi

∮
πA′ . . . πB′ρxf(Zα)πC′dπ

C
′

where

◦ f is homogeneous of degree (−n− 2) in Zα

◦ Zα = (ωA, πA′)

◦ ρx denotes restriction to the line P1 ⊂ PT defined by x via the twistor

correspondence

◦ πA′ are homogeneous coordinates on P1

◦ the contour is arbitrary, provided it avoids the singularities of f and varies

continuously with x

Proof. First observe that the integral is well-defined on P1, since the entire

integrand (including the differential) has homogeneity 0 in πA′ . Applying the

chain rule we obtain

∇AA′ρxf(Zα) =
∂

∂xAA
′ ρxf(ωA, πA′) = ρx

∂f

∂ωC
∂ωC

∂xAA
′ = iπA′ρx

∂f

∂ωA

Now differentiating under the integral sign we get

∇CC′ϕA′...B′ =
1

2π

∮
πA′ . . . πB′πC′ρx

∂f

∂ωC
πE′dπ

E
′

which is clearly symmetric in A′ . . . C ′ and so satisfies the ZRM equations in

the form of Lemma 4.50.

Remark 6.5. By Remark 3.39 we may regard f as a section of O(−n − 2) on

P3. We adopt this viewpoint more explicitly in §6.2.

Remark 6.6. Our proof is incomplete, for we have not demonstrated that an

appropriate contour exists. We see in Example 6.8 that this is indeed a nontrivial

problem. We leave this subtle point to the rigorous methods of §6.2. There, we

solve the problem using the fact that CM+ is Stein.

Theorem 6.7. The helicity −n/2 ZRM equations for a valence n spinor field

ϕA...B have solutions on CM+ given by

ϕA...B(x) =
1

2πi

∮
ρx

∂

∂ωA
. . .

∂

∂ωB
f(Zα)πC′dπ

C
′

where f is homogeneous of degree (n− 2) in Zα and all other notation is as in

the previous theorem.
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Proof. Trivial from the previous proof.

Example 6.8 (Wave equation). The alert reader may notice that we have not

explicitly verified our formulae in the case n = 0. This is not hard to check, so

instead we compute an example to develop our intuition. Consider the twistor

function

f(Zα) =
1

(AαZ
α)(BβZ

β)

This has homogeneity −2 in Zα so applying Theorem 6.4 should yield a solution

to the wave equation. For convenience set

αA
′

= iAAx
AA
′

+AA
′

and βA
′

= iBAx
AA
′

+BA
′

so that the integral reads

ϕ(x) =
1

2πi

∮
1

(αA
′

πA′)(β
B
′

πB′)
πC′dπ

C
′

Observe that an appropriate contour exists iff the poles are distinct. Indeed any

choice of contour varying continuously with x and enclosing one of the poles

becomes singular when the poles coincide. If we want ϕ(x) to be well-defined

on CM+ we need to place some restriction on Aα and Bβ .

Now Aα and Bα define a line L in PT and hence a point y ∈ M via the dual

twistor correspondence. By a complex extension of Theorem 5.18 we see that

ϕ(x) is singular at precisely those x ∈ CM which are complex null separated

from y. Appealing to a complexified version of Remark 5.21 we have that ϕ(x)

is singular iff Lx ≡ C (x) intersects L in PT . Therefore it suffices to choose Aα

and Bα such that L lies entirely in PT− for ϕ to be well-defined on CM+.

We may now assume that the poles are distinct, so in particular αA
′

βB′ 6= 0.

Let z be a coordinate on P1 given by

πA′ = αA′ + zβA′

Then the integral becomes

ϕ(x) =
1

2πi

∮
dz

(αA
′

βA′)z
=

1

αA
′

βA′

by the residue theorem. Now since Aα and Bβ lie on the line defined by y we

have, by the dual twistor correspondence

AA
′

= −iyAA
′

AA and BA
′

= −iyAA
′

BA
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whence we obtain

αA
′

βA′ = AAx
AA
′

BBxBA′ −AAy
AA
′

BBxBA′

−AAx
AA
′

BByBA′ +AAy
AA
′

BByBA′

Now using the relations

x0A
′

x1A
′ = x00

′

x10
′ + x01

′

x11
′ = x11

′x10
′ − x10

′x11
′ = 0

x0A
′

x0A
′ = x1A

′

x1A
′

we may conclude that

AAB
BxAA

′

xBA′ =
1

2
AAB

Ax2

Treating the other terms similarly we obtain

ϕ(x) =
2

AAB
A(x− y)2

It is now trivial to check that ϕ(x) satisfies the wave equation, as required.

Example 6.9 (ASD Coulomb field). In Hughston and Ward [22, p. 137] it is

claimed that the twistor function

f(Zα) = log
Z1Z2 − Z0Z3

Z2Z3

produces an ASD Coulomb field Fµν where F 0j ≡ Ej ≡ iBj and

E ∝ r/r3

Let F be an ASD Coulomb field. Then by Theorem 4.30 we may write

Fab = FAA′BB′ = ϕABεA′B′

In particular we have

Ex = F01 = −ϕ01

Ey = F02 =
1

2
(ϕ11 − ϕ00)

Ez = F03 = −1

2
i(ϕ00 + ϕ11)
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Now we calculate ϕAB using the contour integral formula

ϕAB(t, x, y, z) =
1

2πi

∮
ρx

∂

∂ωA
∂

∂ωB
f(Zα)πE′dπ

E
′

=
1

2πi

∮
(δ0
Aπ1

′ − δ1
Aπ0

′)(δ0
Bπ1

′ − δ1
Bπ1

′)

(x1A
′

πA′π0
′ − x0A

′

πA′π1
′)2

πE′dπ
E
′

Choosing local coordinates πE′ = (1, ξ) and using the convention(
x00

′

x01
′

x10
′

x11
′

)
=

1√
2

(
t+ x y + iz

y − iz t− x

)

we get

ϕAB =
1

2πi

∮
dξ

(δ1
A − δ

0
Aξ)(δ

1
B − δ

0
Bξ)

(1/
√

2(y − iz) +
√

2xξ − 1/
√

2(y + iz)ξ2)2

This has double poles at

ξ =
−
√

2x±
√

2x2 + 2y2 + 2z2

−
√

2(y + iz)
=

x∓ r
y + iz

Denote these ξ1 and ξ2. The residue at ξ1 is

r1 = ρξ1
d

dξ

2(δ1
A − δ

0
Aξ)(δ

1
B − δ

0
Bξ)

(y + iz)2(ξ − ξ2)2

=
1

2r2

(
−δ0

A(δ1
B − δ

0
Bξ1)− δ0

B(δ1
A − δ

0
Aξ1)

+ (δ1
A − δ

0
Aξ1)(δ1

B − δ
0
Bξ1)(y + iz)/r

)
Now we calculate explicitly

ϕ01 =
1

2r2 (−1− ξ1(y + iz)/r) = − x

2r3

ϕ00 =
1

2r2 (2ξ1 + ξ2
1(y + iz)/r) = − (y − iz)

2r3

ϕ11 =
(y + iz)

2r3

whence we find

Ex =
x

2r3 , Ey =
y

2r3 , Ez =
z

2r3

as required.

Remark 6.10. It is natural to ask whether we can formulate an inverse twistor
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transform. Given a ZRM field ϕ on CM+, what is the set of twistor functions

which yield ϕ under the Penrose integral? This is not immediately obvious.

Suppose we are given f producing ϕ via the integral formula with contour Γ at

x. Let h and h̃ be holomorphic on opposite sides of Γ. Then certainly f +h− h̃
will also generate ϕ. This freedom should remind the reader of our discussion

of sheaf cohomology in §2.3. Indeed we now proceed to reformulate the ideas of

this section in the language of sheaves, thus obtaining a bijective transform.

6.2 The Penrose Transform

Lemma 6.11. A function f(xAA
′

, πA
′

) on F pushes down to a function on P

iff πA
′

∇AA′f = 0 in every coordinate chart.

Proof. We demonstrate that this is equivalent to the stated condition in our

preferred patch (PI ,MI ,FI). Then the general result follows by a combinatorial

argument. Clearly f(xAA
′

, πA′) yields a function on PI iff it is constant each

α-plane defined by xAA
′

and πA′ . We observe

πA
′

∇AA′f = 0 ⇔ ∇AA′f = ξAπA′ for some ξA(π)

⇔ f = ξAπA′x
AA
′

= ξAω
A

and the result follows.

Remark 6.12. In particular a function f(xAA
′

, πA′) on F pushes down to a

twistor function iff the given condition holds in the non-projective sense. We

shall make frequent use of this observation.

Theorem 6.13.

H1(PT+,O(−n− 2)) ∼= {ZRM fields ϕA′...B′ of helicity n/2 on CM+}

where we may view the set of ZRM fields as a group under addition since the

ZRM equations are linear.

Proof. The flavour of the proof is as follows. We construct a short exact se-

quence of sheaves culminating in the sheaf of germs of the desired ZRM fields.

Recalling from §2.3 the long exact sequence in cohomology, we obtain the re-

quired isomorphism by identifying certain sheaves as zero.

Define the sheaves Zn(m) on F+ by stipulating that ϕA′...B′(x, π) ∈ Zn(m)

must satisfy the following conditions

◦ ϕA′...B′ is a symmetric holomorphic valence n primed spinor field on F+

◦ ϕA′...B′ is homogeneous of degree m in π
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◦ ϕA′...B′ satisfies the ZRM equation ∇AA
′

ϕA′...B′ throughout F+

Note immediately that Zn(0) consists of symmetric n index primed spinor fields

which are independent of π, so there is a canonical sheaf isomorphism

Zn(0) ∼= {ZRM fields ϕA′...B′ of helicity n/2 on CM+}

Define a sheaf morphism

P : Zn+1(m− 1) −→ Zn(m)

ϕA′B′...C′ 7−→ πA
′

ϕA′B′...C′

We claim that this morphism is surjective, and it suffices to check this locally

by Theorem 2.25. Let ψB′...C′ ∈ Zn(m) be arbitrary. Define pointwise for each

(xAA
′

, πA′) ∈ F
+

ϕ0B
′
...C
′ =

1

2π0ψB′...C′

ϕ1B
′
...C
′ =

1

2π1ψB′...C′

which we can do since πA′ 6= 0 ∈ F by definition. When π0
′ = 0 or π0

′ = 0

individually an obvious modification can be made. Then clearly ϕA′...C′ ∈
Zn+1(m − 1) and around every point of F+ there exists a neighbourhood in

which P (ϕA′...C′) = ψB′...C′ .

Consider the special case m = 0. Let K denote the sheaf kernel of P :

Zn+1(−1) −→ Zn(0). Define on F+ the sheaves

T (n) ={scalar fields f(x, π) homogeneous of degree n

in π which push down to twistor functions}

We claim that K is isomorphic to T (−n − 2). Indeed let χA′...B′ ∈ K be an

(n + 1) index spinor field on F+, homogeneous of degree −1 in π. Then since

χA′...B′ symmetric we may write

χA′...B′ = α(A
′ . . . βB′)

using Lemma 4.31. We then deduce

πA
′

α(A
′ . . . βB′) = 0 ⇒ πA

′

. . . πB
′

α(A
′ . . . βB′) = 0 (†)

⇒ πA
′

αA′ . . . π
B
′

βB′ = 0
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wlog⇒ πA
′

αA′ = 0

⇒ πA
′

αA′ = 0, . . . πB
′

βB′ = 0 by (†) and induction

⇒ χA′...B′ = πA′ . . . πB′f(x, π)

Now since π 6= 0 the ZRM equations imply

πA′∇
AA
′

f = 0

which is precisely the condition that f pushes down to a twistor function. Ob-

serve also that f is homogeneous of degree (−n − 2) in π. The converse is

obvious.

We thus have a short exact sequence of sheaves

0 −→ T (−n− 2)
π
A
′ ...π

B
′

−−−−−−→ Zn+1(−1)
π
A
′

−−→ Zn(0) −→ 0

whence we obtain a long exact sequence of cohomology

. . . −→ H0(F+,Zn+1(−1)) −→ H0(F+,Zn(0))
δ
∗

−→

H1(F+, T (−n− 2)) −→ H1(F+,Zn+1(−1)) −→ . . .

We now identify these groups.

◦ Suppose s(x, π) ∈ H0(F+,Zn+1(−1)). Then s is a global section of

Zn+1(−1) over F+. For fixed x, s defines a global section of O(−1) over

P1, so s = 0 by Lemma 3.37. Thus H0(F+,Zn+1(−1)) = 0.

◦ H0(F+,Zn(0)) is clearly the desired group of ZRM fields on F+.

◦ Observe that we may canonically identify T (−n − 2) with the sheaf of

twistor functions homogeneous of degree (−n − 2) on T+, which itself is

naturally intepreted as the sheaf O(−n − 2) on PT+. We may therefore

write H1(F+, T (−n− 2)) ∼= H1(PT+,O(−n− 2)).

◦ Following Hughston and Ward [22, p. 61] we note without proof that

CM+ is Stein. Since Zn+1(−1) is a sheaf of holomorphic sections of a

vector bundle it is coherent analytic by Remark 2.42. Thus the pullback

G of Zn+1(−1) to CM+ has H1(CM+,G) = 0. Recall from Theorem 3.42

that H1(P1,O(−1)) = 0. Hence the pullback H of Zn+1(−1) to P1 has

H1(P1,H) = 0. Applying a suitable Künneth formula, cf. Sampson and

Washnitzer [35], we get H1(F+,Zn+1(−1)) = 0.

Therefore we may conclude that δ∗ provides the required isomorphism in the

statement of the theorem, and our proof is complete.
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Remark 6.14. We may regain the contour integral formulation of the Penrose

transform by explicitly analysing the map (δ∗)−1. Recall that to define δ∗ we

consider the cochain complex of sheaves on F+

0 C0(T (−n− 2)) C0(Zn+1(−1)) C0(Zn(0)) 0

0 C1(T (−n− 2)) C1(Zn+1(−1)) C1(Zn(0)) 0

d d d

d d d

We reverse the steps in Theorem 2.48 to determine (δ∗)−1. Choose a cover

which is Leray for all the given sheaves on F+ and work with Čech cohomology.

Let fij ∈ H
1(PT,O(−n− 2)). Then by commutativity of the above diagram

πA′ . . . πC′fij ∈ H
1(Zn+1(−1)) = 0

Therefore we may write

πA′ . . . πC′fij = ρ[iψj]A′...C′

for some ψjA′...C′ ∈ C
0(Zn+1(−1)). Now define

ϕjA′...B′ = ψjA′...B′π
C
′

∈ C0(Zn(0))

and note that ϕjA′...B′ ∈ H0(Zn(0)) by the isomorphism H1(T (−n − 2)) ∼=
H0(Zn(0)) proved above. Thus there is a ZRM field ϕA′...B′ with

ρjϕA′...B′ = ϕjA′...B′ = ψjA′...B′π
C
′

Now for fixed x we know that ρxfij defines an element of O(−n − 2) over P1.

Therefore πA′ . . . πC′ρxfij is an element of O(−1) over P1. Employing Sparling’s

formula (Example 3.40) we may therefore write

ϕjA′...B′ = πC
′ 1

2πi

∮
(ξF

′

πF ′)
−1ξA′ . . . ξC′ρxf01(ωA, ξA′)ξG′dξ

G
′

=
1

2πi

∮
ξA′ . . . ξB′ρxf01(ωA, ξA′)ξC′dξ

C
′

agreeing with Theorem 6.4.

Remark 6.15. We lacked some rigour in our proof above, failing to mention the

subtleties involved in comparing sheaves on different spaces. More complete
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reasoning requires the use of spectral sequences, which we have not discussed.

A full account is given in Ward and Wells [39, §7].

Theorem 6.16.

H1(PT+,O(n− 2)) ∼= {ZRM fields ϕA...B of helicity −n/2 on CM+}

Proof. This proof has a similar flavour to the previous argument. Define on F+

the following sheaves

K(n) = {holomorphic functions f(x, π) homogeneous of degree n in π}

QA(n+ 1) = {spinor fields ψA(x, π) homogeneous of degree

(n+ 1) in πA′ and satisfying πA′∇
AA
′

ψA = 0}

Define a sheaf morphism DA : K(n) −→ QA(n+ 1) by

DAf = πA
′

∇AA′f

It is easy to verify that this is well-defined using Lemma 4.48. Moreover it is

surjective by the proof of Theorem 4.52. Let T (n) denote the kernel of DA and

identify as before

T (n) ={scalar fields f(x, π) homogeneous of degree n

in π which push down to twistor functions}

Now we have a short exact sequence of sheaves

0 −→ T (n) ↪→ K(n)
DA−−→ QA(n+ 1) −→ 0

whence we obtain a long exact sequence of cohomology

0 −→ H0(F+, T (n)) −→ H0(F+,K(n)) −→ H0(F+,QA(n+ 1))
δ
∗

−→

H1(F+, T (n)) −→ H1(F+,K(n)) −→ . . .

We investigate each of these groups in turn.

◦ Let f ∈ H0(F+, T (n)). Then we may write

f(x, π) = µA′...B′(x)πA
′

. . . πB
′

where µA′...B′ is a symmetric holomorphic spinor field on CM+. The push
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down condition is

πC
′

πA
′

. . . πB
′

∇CC′µA′...B′ = 0

⇔ ∇C(C
′µA′...B′) = 0

Hence we may identify H0(F+, T (n)) with the group Tn of µA′...B′ on

CM+ satisfying this equation.

◦ Let λ ∈ H0(F+,K(n)). Then we may write

λ = λA′...B′(x)πA
′

. . . πB
′

where λA′...B′ is a symmetric holomorphic spinor field on CM+. There

are no additional constraints on λA′...B′ so we identify H0(F+,K(n)) with

the group Λn of such λA′...B′ .

◦ Let ψA ∈ H
0(F+,QA(n+ 1)) and write

ψA = ψAA′...C′(x)πA
′

. . . πC
′

where ψAA′...C′ is a holomorphic spinor field on CM+ symmetric in its

(n+ 1) primed indices. The defining condition for QA(n+ 1) gives

πD
′

πA
′

. . . πC
′

∇AD′ψA′...C′A = 0

⇔ ∇A(D′ψA′...C′)A = 0

We identify H0(F+,QA(n+ 1)) with the group Ψ1
n+1 of ψAA′...C′ on CM+

satisfying this equation.

◦ As in the previous proof, we somewhat unrigorously writeH1(F+, T (n)) =

H1(PT+,O(n)).

◦ Recall that H1(P1,O(n)) = 0. Also K(n) is coherent analytic as a sheaf of

sections of the trivial C-bundle over F+. Using again that CM+ is Stein,

and an appropriate Künneth formula we obtain H1(F+,K(n)) = 0.

Rewriting the long exact sequence in our new notation we have the section

0 −→ Tn ↪→ Λn
σ−→ Ψ1

n+1
δ
∗

−→ H1(PT+,O(n)) −→ 0 (†)

where the reader may easily check that σ is given by

σ(λB′...C′) = ∇A(A′λB′...C′)

80



We now relate this sequence to ZRM fields using Hertz potentials, cf. §4.3. Let

Φn+2 denote the group consisting of (n+ 2) unprimed index ZRM fields ϕA...D

on CM+. Define a group homomorphism P : Ψ1
n+1 −→ Φn+2 by

P (ψAB′...D′) = ∇B
′

(B . . .∇
D
′

D ψA)B
′
...D

′

We check that this is well-defined by computing

∇A
′

A ∇
B
′

(B . . .∇
D
′

D ψA)B
′
...D

′ = ∇BB′ . . .∇
D
D
′∇A(A′ψB′...D′)A = 0

which may be verified by expanding out the symmetrisers on each side. Moreover

observe that P is surjective. Indeed from Theorem 4.52 we know that given

ϕA...D ∈ Φn+2 there exists ψAB′...D′ defined on CM+ such that

ϕA...D = ∇B
′

B . . .∇D
′

D ψAB′...D′

and

∇AA′ψAB′...D′ = 0

since CM+ is simply connected and has vanishing second homotopy group. In

particular we immediately have ψAB′...D′ ∈ Ψ1
n+1 as required.

Finally we claim that ker(P ) = im(σ). For the reverse inclusion we compute

∇B
′

(B . . .∇
D
′

D ∇A)B
′λC′...D′ =

1

2
ε(BA∇

C
′

C . . .∇D
′

D)�λC′...D′ = 0

The forward inclusion follows from an argument similar to the proof of Theo-

rem 4.52, as articulated in Penrose [29, p. 168].

We therefore have an exact sequence

0 −→ Tn ↪→ Λn
σ−→ Ψ1

n+1
P−→ Φn+2

Comparing with (†) we obtain Φn+2
∼= H1(PT+,O(n)) as required.

Remark 6.17. Following Hughston and Ward [22, §2.8] we observe that an ex-

plicit inverse twistor transform exists in this case. Given a ZRM field ϕA...D

let ψAB′...D′ be a Hertz potential. We must construct a cover {Uj} of PT+ and

twistor functions fjk on Ujk. Choose {Uj} with the property that

◦ There exists Y αj ∈ PT+ such that for all Zα ∈ Uj the line joining Y αj and

Zα lies entirely in PT+.

Now suppose Zα ∈ Uj ∩ Uk. Denote by Yj , Yk and Z the α-planes in CM+

corresponding to Y αj , Y
α
k and Zα. Observe by Remark 5.14 that Yj intersects Z
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in a point pj ∈ CM+ defined by the line joining Y αj and Zα in PT+. Similarly

we define pk = Yk ∩ Z ∈ CM+.

We now hypothesise an integral formula for fjk. Let Zα = (ωA, πA′). Choose

an arbitrary contour Γjk from pj to pk lying in Z and define

fjk(Zα) =

∫
Γjk

ψAB′C′...D′π
C
′

. . . πD
′

dxAB
′

We must check that fjk is indendendent of Γjk, defines a 1-cocycle and repro-

duces the potential ψAB′...D′ under (δ∗)−1. The details are given explicitly in

Huggett and Tod [21, p. 96], so we do not reproduce them here.

6.3 The Penrose-Ward Transform

Definition 6.18. Let P be a principal G-bundle overM with connection {Aa}.
Let E be an associated vector bundle, and Da the induced covariant derivative.

For U ⊂M we say that Da is integrable on U iff the parallel transport condi-

tion

V aDaψ = 0 for all V a tangent to U

uniquely determines ψ ∈ Γ(U,E) given ψ(x) at any x ∈ U .

Lemma 6.19. Let P be a principal G-bundle over CM and E an associated

vector bundle. Since CM is contractible, P is trivial so we may work in a single

trivialisation. Let Aa denote the gauge connection, Fab its curvature and Da

the induced covariant derivative on E. Then Fab is ASD iff for every α-plane Z̃

we have Da integrable on Z̃.

Proof. Since Z̃ connected and simply connected, the condition that Da is inte-

grable on Z̃ is equivalent to stipulating that Fab must vanish on Z̃, i.e.

V aW bFab = 0 for all V a,W a tangent to Z̃ (?)

Indeed geometrically the curvature measures the failure of parallel transport

around closed curves in Z̃ to preserve vectors. The integrability condition pre-

cisely states that parallel transport of ψ(x) around any curve in Z̃ leaves it

unchanged.

Fix an α-plane Z̃. Let Zα = (ωA, πA′) be the point in PI defined by Z̃ via

the twistor correspondence. By an earlier argument, any vector V a tangent to

Z̃ may be written V a = πA
′

λA for some spinor λA. Denote by ϕA′B′εAB the

SD part of Fab. Then (?) may be written in the form

ϕA′B′π
A
′

πB
′

= 0
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Now varying the α-plane Z̃ we may obtain all [πA
′

] ∈ P1, so the vanishing of

Fab on all Z̃ is equivalent to the vanishing of the SD part of Fab.

Theorem 6.20. There is a bijection between

◦ ASD GL(n,C) gauge fields on CM

◦ holomorphic rank n vector bundles over PI , which are trivial when re-

stricted to x̂ ≡ C (x) for all x ∈ CM .

Proof. Let P be a GL(n,C) bundle over CM with gauge potential A and ASD

curvature F . Let Ψ be the vector bundle associated to the fundamental repre-

sentation, with covariant derivative Da. Define a vector bundle E over PI by

choosing the fibre over Z ∈ PI to be

EZ = {ψ ∈ Γ(Ψ) : V aDaψ = 0 for all V a tangent to Z̃ ≡ C−1(Z)} (†)

By the previous lemma, since F is ASD we know that Da is integrable on CM .

Therefore each ψ ∈ EZ is determined by its value ψ(x) ∈ Cn at an arbitrary

point x ∈ CM . In other words, EZ ∼= Cn.

Let U be some simply connected neighbourhood of Z. Make a choice of

y ∈ CM identifying EY with Cn and varying holomorphically with Y ∈ U .

This is possible since the twistor correspondence is appropriately holomorphic.

We hence obtain a local trivialisation U × Cn. The transition functions are

clearly holomorphic, so E is a holomorphic vector bundle.

Now let x ∈ CM be arbitrary. Choose a vector ψ in the fibre of Ψ over

x. Then since F is ASD, ψ determines a section of V on all α-planes through

x. Hence ψ determines a section of E restricted to x̂. Now choosing n linearly

independent vectors at x yields n linearly independent sections of E|x̂, which is

thus trivial by Remark 3.59.

Conversely let E be a bundle over PI satisfying the conditions stated above.

Define a vector bundle Ψ over CM by taking the fibre over x ∈ CM to be

Ψx = Γ(x̂, E|x̂)

Since x̂ is a Riemann sphere in PI we see that Ψx
∼= Cn by a vector-valued

version of Liouville’s theorem, cf. Bachman and Narici [2, p. 309]. We endow Ψ

with the structure of a vector bundle using the local smoothness of the twistor

correspondence.

We must construct a connection Aa on the associated principle bundle to

Ψ, or equivalently a covariant derivative Da on Ψ. This is uniquely determined

by specifying how to parallel transport vectors in Ψx along curves in CM . It
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suffices to specify a parallel transport condition for null directions only, for these

span the tangent space at each point of CM .

Suppose we are given a null vector V a at x ∈ CM , and a vector ψ(x) ∈ Ψx.

Let y ∈ CM be the point defined by moving along V a from x. We want to define

the parallel transport ψ(y) ∈ Ψy of ψ(x). That is to say, we must identify a

section of E|x̂ with E|ŷ in some way. The twistor correspondence provides a

natural method.

Write V a = πA
′

λA and define a twistor Z ∈ PI by Zα = (xAA
′

πA′ , πA′).

Then Z̃ is an α-plane containing x with V a as a tangent. Moreover a point

y ∈ Z̃ corresponds to a line ŷ ⊂ PI through Z. Now identify sections of E|x̂
with sections of Eŷ according to their value at Z. This defines a covariant

derivative on Ψ.

Observe that by definition the covariant derivative is flat on all α-planes.

Hence by the previous lemma the curvature is ASD, as required. It is im-

mediately clear that our constructions are mutually inverse, and the proof is

complete.

Remark 6.21. Although geometrically appealing this proof is useless for prac-

tical applications. To equip the reader with tools for calculation, we note some

explicit formulae. First observe the subtle point that PI = PT \ {πA′ = 0}, cf.

Huggett and Tod [21, p. 57].

Now we argue that any vector bundle E on PI satisfying the conditions of

the theorem may be trivialised using a cover of just two open sets, namely

W0 = {(ωA, πA′) : π0
′ 6= 0}

W1 = {(ωA, πA′) : π1
′ 6= 0}

Set Pα0 = (0, 0, 0, 1) ∈ W1 and Pα1 = (0, 0, 1, 0) ∈ W0, and denote the corre-

sponding α-planes by P̃0 and P̃1. Now let Z ∈W1 be an arbitrary twistor. Then

P̃1 ∩ Z̃ is precisely a point PZ1 . Indeed the intersection is given by the solution

of the simultaneous equations

ωA = ixAA
′

πA′

0 = ixA0
′

which is unique in the case π1
′ 6= 0.

We claim that E|W1
is trivial. We may assume wlog that E has the form

(†). Now trivialise E over W1 by choosing as coordinates for ψ ∈ EZ the value

ψ(PZ1 ) ∈ Cn. The required properties for a local trivialisation are easily checked.

Similarly E|W0
is trivial, establishing the result.
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Henceforth we fix the cover {Wi}. Then the structure of E is completely

determined by the transition matrix

F : W0 ∩W1 −→ GL(n,C)

allowing us to explicitly relate the connection Aa on Ψ to the structure of E.

Note that the transition matrix F (Z) is determined by the parallel transport

of a vector ψ(PZ0 ) to PZ1 . That is to say

ψ(PZ1 )α = F (Z)αβψ(PZ0 )

Work in coordinates where PZ0 = xµ and suppose PZ1 = xµ + δµ. Then by

writing the parallel transport condition infinitesimally we produce

ψ(PZ1 )α = (Iαβ −Aαβν δν)ψ(PZ0 )β

where I is the n×n identity matrix. For general PZ1 we break up the path from

PZ0 to PZ1 into infinitesimal segments and apply this formula, which yields the

definition of the path-ordered exponential integral. Hence we may write

F (Z) = P exp(−
∫

Γ

Aadx
a)

For the inverse transform, suppose we have a transition matrix F (ωA, πA′).

Let G(x, πA′) = F (ixAA
′

, πA′) denote F restricted to a line x̂ for some x ∈ CM .

Now E is trivial over x̂ so by Lemma 3.26 there exist matrix-valued functions

Hi on Wi ∩ x̂ such that G = H0H
−1
1 on W0 ∩W1 ∩ x̂.

Observe now that every section of E|x̂ may be represented by a pair ξi of

vector fields on Wi ∩ x̂ where ξ0 = H0ηx and ξ1 = H1ηx for some constant ηx ∈
Cn. Letting x vary we obtain a section ψ of Ψ over CM with ψ(x) = ηx. Now

define the covariant derivative Da on Ψ by requiring that ψ satisfy the parallel

transport equation along null directions πA
′

λA. The associated connection is

given by

πA
′

AAA′ = H−1
1 πA

′

∇AA′H1

as the reader may verify, cf. Ward and Wells [39, p. 379].
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7 Conclusion

It is with mixed feelings that we reach the concluding lines of this review. We

have made a long journey across many different terrains, and stop just as the

fertile plains open out before us. The reader should now be well-equipped to

continue this voyage alone. Here we signpost a few interesting waypoints.

Most obviously, we have failed to give specific applications of the Penrose-

Ward transform. Perhaps the most basic nontrivial example considers the min-

imal coupling of gauge fields to matter. A heuristic overview in provided in

Ward and Wells [39, p. 395], and for a full treatment see Hitchin [19].

Twistors have found a particular niche in the study of instantons and monopoles.

As a motivational example one might read the “Twistor Quadrille” account of

charge quantization in Hughston and Ward [22]. Seminal papers include Hitchin

[20] and Atiyah et al. [1].

Twistors are currently being employed as a method of solving nonlinear

partial differential equations (PDEs). The philosophy is encapsulated by the

Penrose-Ward transform. One represents an system of nonlinear PDEs as com-

patibility conditions for an overdetermined set of linear PDEs. A recent refer-

ence is Dunajski [9].

For the theoretical physicist the most exciting contemporary development is

the discovery of twistor string theory by Witten [40]. Certain supersymmetric

scattering amplitudes with particularly neat forms in twistor space continue to

be explored. It remains to be seen whether the link between twistor theory and

string theory is more than just a mathematical curiosity.

Finally, at the other end of the mathematical spectrum, twistor methods

admit generalizations to different spacetime signatures. This has yielded various

applications in Riemannian geometry, including the study of minimal surfaces.

See, for example, Woodhouse [41] or Burstall and Rawnsley [7].
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