One of the first pieces of Bach ever recorded was August Wilhelmj’s arrangement of the Orchestral Suite in D major. Today the transcription for violin and piano goes by the moniker Air on the G String. It’s an inspirational and popular work in all it’s many incarnations, not least this one featuring my favourite cellist Yo-Yo Ma.

This morning we heard the physics version of Bach’s masterpiece. Superstrings are nothing new, of course. But recently they’ve received a reboot courtesy of Dr. David Skinner among others. The ambitwistor string is an infinite tension version which only admit right-moving vibrations! At first the formalism looks a little daunting, until you realise that many calculations follow the well-trodden path of the superstring.

Now superstring amplitudes are quite difficult to compute. So hard, in fact, that Dr. Oliver Schloterrer devoted an entire talk to understanding particular functions that emerge when scattering just strings at next-to-leading order. Mercifully, the ambitwistor string is far more well-behaved. The resulting amplitudes are rather beautiful and simple. To some extent, you trade off the geometrical aesthetics of the superstring for the algebraic compactness emerging from the ambitwistor approach.

This isn’t the first time that twistors and strings have been combined to produce quantum field theory. The first attempt dates back to 2003 and work of Edward Witten (of course). Although hugely influential, Witten’s theory was esoteric to say the least! In particular nobody knows how to encode quantum corrections in Witten’s language.

Ambitwistor strings have no such issues! Adding a quantum correction is easy – just put your theory on a donut. But this conceptually simple step threatened a roadblock for the research. Trouble was, nobody actually knew how to evaluate the resulting formulae.

Nobody, that was, until last week! Talented folk at Oxford and Cambridge managed to reduce the donutty problem to the original spherical case. This is an impressive feat – nobody much suspected that quantum corrections would be as easy as a classical computation!

There’s a great deal of hope that this idea can be rigorously extended to higher loops and perhaps even break the deadlock on maximal supergravity calculations at -loop level. The resulting concept of off-shell scattering equations piqued my interest – I’ve set myself a challenge to use them in the next 12 months!

Scattering equations, you say? What are these beasts? For that we need to take a closer look at the form of the ambitwistor string amplitude. It turns out to be a sum over the solutions of the following equations

The are just two particle invariants – encoding things you can measure about the speed and angle of particle scattering. And the are just some bonus variables. You’d never dream of introducing them unless somebody told you to! But yet they’re exactly what’s required for a truly elegant description.

And these scattering equations don’t just crop up in one special theory. Like spies in a Cold War era film, they seem to be everywhere! Dr. Freddy Cachazo alerted us to this surprising fact in a wonderfully engaging talk. We all had a chance to play detective and identify bits of physics from telltale clues! By the end we’d built up an impressive spider’s web of connections, held together by the scattering equations.

Freddy’s talk put me in mind of an interesting leadership concept espoused by the conductor Itay Talgam. Away from his musical responsibilities he’s carved out a niche as a business consultant, teaching politicians, researchers, generals and managers how to elicit maximal productivity and creativity from their colleagues and subordinates. Critical to his philosophy is the concept of keynote listening – sharing ideas in a way that maximises the response of your audience. This elusive quality pervaded Freddy’s presentation.

Following this masterclass was no mean feat, but one amply performed by my colleague Brenda Penante. We were transported to the world of on-shell diagrams – a modern alternative to Feynman’s ubiquitous approach. These diagrams are known to produce the integrand in planar $\mathcal{N}=4$ super-Yang-Mills theory to all orders! What’s more, the answer comes out in an attractive form, ripe for integration to multiple polylogarithms.

Cunningly, I snuck the word planar into the paragraph above. This approximation means that the diagrams can be drawn on a sheet of paper rather than requiring dimensions. For technical reasons this is equivalent to working in the theory with an infinite number of color charges, not just the usual we find for the strong force.

Obviously, it would be helpful to move beyond this limit. Brenda explained a decisive step in this direction, providing a mechanism for computing all leading singularities of non-planar amplitudes. By examining specific examples the collaboration uncovered new structure invisible in the planar case.

Technically, they observed that the boundary operation on a reduced graph identified non-trivial singularities which can’t be understood as the vanishing of minors. At present, there’s no proven geometrical picture of these new relations. Amazingly they might emerge from a 1,700-year-old theorem of Pappus!

Bootstraps were back on the agenda to close the session. Dr. Agnese Bissi is a world-expert on conformal field theories. These models have no sense of distance and only know about angles. Not particularly useful, you might think! But they crop up surprisingly often as approximations to realistic physics, both in particle smashing and modelling materials.

Agnese took a refreshingly rigorous approach, walking us through her proof of the reciprocity principle. Until recently this vital tool was little more than an ad hoc assumption, albeit backed up by considerable evidence. Now Agnese has placed it on firmer ground. From here she was able to “soup up” the method. The supercharged variant can compute OPE coefficients as well as dimensions.

Alas, it’s already time for the conference dinner and I haven’t mentioned Dr. Christian Bogner‘s excellent work on the sunrise integral. This charmingly named function is the simplest case where hyperlogarithms are not enough to write down the answer. But don’t just take it from me! You can now hear him deliver his talk by visiting the conference website.

**Conversations**

I’m very pleased to have chatted with Professor Rutger Boels (on the Lagrangian origin of Yang-Mills soft theorems and concerning the universality of subheading collinear behaviour) and Tim Olson (about determining the relative sign between on-shell diagrams to ensure cancellation of spurious poles).

*Note: this post was originally written on Thursday 9th July but remained unpublished. I blame the magnificent food, wine and bonhomie at the conference dinner!*