Tag Archives: experiment

Science and Faith – The Arts of the Unknown

I spent this morning singing a Sunday service at St. George’s Church in Borough. An odd occupation for a scientist perhaps, especially given the high profile of several atheist researchers! Yet a large number of scientists see no contradiction between faith and science. In fact, my Christian faith is only deepened by my fascination with the natural world.

Picture a scientist. Chances are you’ve already got in your mind a geeky, rational person, calibrating a precise experiment or poring over a dry mathematical formula! As with any stereotype, it has it’s merits. But it misses a vital quality in research – imagination.

To succeed as a scientist, you must be creative above all else. It’s no use just learning experimental techniques or memorising formulae. Every new idea must necessarily start off as a fantasy. Great painters are not merely lauded for their 10,000 hours of practice with a paintbrush. It is their capacity to conceive and relay vivid scenes which ensures their place in history. And so it is with science.

So why are scientists seen as cold and calculating and exact, rather than passionate and original? The problem lies in education. While young children are encouraged to express themselves in Literacy, Numeracy is all too often a trudge through tedious and predictable sums. In “arts” subjects, questions are a magical tool enabling discussion, debate and opinion. In “sciences” they merely distinguish right from wrong.

After 15 years of schooling, no wonder the stereotype is embedded! As a teenager, I very nearly ditched the sciences in favour of subjects where expression was free and original arguments rewarded. I’m eternally thankful to my teachers, parents and bookshelf for convincing me that the curriculum was utterly unrepresentative of real science.

So what’s to be done. For any budding scientists out there, your best bet is to read some books. Not your school textbooks – chances are they are dull as ditchwater and require no creative input at all. I mean books written by real life mathematicians, physicists, biologists… These will give you an insight into the imagination that drives research, the contentious debates and the lively exchanges of ideas.

You might not understand everything, but that’s the whole point – science is about the unknown, just as much as art or faith. It is exactly this point which we must evangelise again and again. Perhaps then fewer people will write negative reviews criticising science for being complex, poetic and beautiful.

As a wider society, we can take action too! We must demand better science teaching from a young age. Curricula should emphasise problem solving over knowledge, ideas over techniques and originality over regurgitation. This is already the mantra for many traditionally “artistic” discplines. It must be the battle cry for scientists also!

A better approach to science would democratize opportunity for the next generation. No longer will the relative creativity of girls be arbitrarily punished – an approach which can only discourage women from entering science in the long run. No longer will there be a tech skills gap threatening to undermine the thriving software industry. The UK has a uniquely privileged scientific pedigree. For future equality, economy and diversity, we must use it.

In the service this morning Fr Jonathan Sedgwick talked of the danger of applying scientific laws to the world at large. The concepts of “cause and effect” and “zero sum games” may well work in vacuo, but they are artificial and burdensome when applied to interpersonal relationships. Quite right – as Christians we must question these human rules, and look for a divine inspiration to guide our lives!

But this is also precisely what we must do as scientists. A good scientist always questions their models, constantly listening for the voice of intuition. For science – like our own existence – is ever changing. And it’s our job to search for the way, the truth and the life.

My thanks to Margaret Widdess, who prepared me for confirmation two years ago at St. Catharine’s College, Cambridge and with whom I first talked deeply about the infinity of science and faith.

Advertisements

Double Whammy – New Evidence for Inflation and Gravitational Waves

Today the latest results from the BICEP2 telescope in Antarctica are out. And boy, are they exciting! They provide stark evidence for two widely believed theoretical predictions, namely inflation and gravitational waves. The authors are already being tipped for a Nobel prize.

So what’s the science behind this magnificent discovery? It’s easiest to start with the name of the telescope. BICEP stands for “Background Imaging of Cosmic Extragalactic Polarization”. That means looking for signals from the Big Bang. Cool, huh?

After the Big Bang  the universe was a hot dense soup of particles. Eventually (380,000 years later) things were cool enough for the universe to become transparent. Particles could bind together to form hydrogen atoms, emitting light in the process. Nowadays we see this ancient light as microwave radiation covering space.

Ilc_9yr_moll4096
The most ancient light in the universe as captured by a NASA probe. The different colors indicate the intensity of radiation recorded.

This cosmic microwave background (CMB) has a particularly puzzling feature. It’s much more uniform than we should expect from a generic Big Bang explosion. Intuitively most explosions don’t generate exactly symmetrical outcomes!

What’s needed is some mechanism to smooth out the differences between different parts of space. Here’s where the idea of inflation comes in. A fraction of a second after the Big Bang we think that the universe blew up at an astonishing rate. This happened so fast that there was no time for inconsistencies to creep in. The result – a uniform cosmos.

It’s certainly an appealing explanation, but the problem is that there’s been little direct evidence. Until now, that is. Cosmologists on the BICEP project were looking for a particular signature from inflation, and it seems like they’ve found it!

To understand their method we need to know something about light. A wave of light can oscillate in different directions perpendicular to its path. A light wave coming into your eyes from your screen will oscillate somewhat up-down and somewhat left-right. These two options are known as polarizations of light.

It turns out that you can measure exactly how light in the CMB is polarized. This is useful because inflation produces a particular polarization pattern called a B mode. It’s taken decades to locate this smoking gun, but now the BICEP team have done it.

Hang on, couldn’t these B modes come about some other way? Probably not. The B mode pattern we observe seems to arise from the interaction of light with gravitational waves. And to get enough of these we need inflation. Or perhaps this effect is an observational fluke? According to the paper, we’re 99.999999% sure it isn’t.

It’s worth pointing out that this result is a double whammy. It confirms theories of inflation and gravity. Nobody has yet detected a gravitational wave, despite the fact they’re theoretically an easy consequence of Einstein’s general relativity. This latest development is further indirect evidence of their existence.