Tag Archives: 2015

Conference Amplitudes 2015 – Integrability, Colorful Duality and Hiking

The middle day of a conference. So often this is the graveyard slot – when initial hysteria has waned and the final furlong seems far off. The organisers should take great credit that today was, if anything, the most engaging thus far! Even the weather was well-scheduled, breaking overnight to provide us with more conducive working conditions.

Integrability was our wake-up call this morning. I mentioned this hot topic a while back. Effectively it’s an umbrella term for techniques that give you exact answers. For amplitudes folk, this is the stuff of dreams. Up until recently the best we could achieve was an expansion in small or large parameters!

So what’s new? Dr. Amit Sever brought us up to date on developments at the Perimeter Institute, where the world’s most brilliant minds have found a way to map certain scattering amplitudes in 4 dimensions onto a 2 dimensional model which can be exactly solved. More technically, they’ve created a flux tube representation for planar amplitudes in \mathcal{N}=4 super-Yang-Mills, which can then by solved using spin chain methods.

The upshot is that they’ve calculated 6 particle scattering amplitudes to all values of the (‘t Hooft) coupling. Their method makes no mention of Feynman diagrams or string theory – the old-fashioned ways of computing this amplitude for weak and strong coupling respectively. Nevertheless the answer matches exactly known results in both of these regimes.

There’s more! By putting their computation under the microscope they’ve unearthed unexpected new physics. Surprisingly the multiparticle poles familiar from perturbative quantum field theory disappear. Doing the full calculation smoothes out divergent behaviour in each perturbative term. This is perhaps rather counterintuitive, given that we usually think of higher-loop amplitudes as progressively less well-behaved. It reminds me somewhat of Regge theory, in which the UV behaviour of a tower of higher spin states is much better than that of each one individually.

The smorgasbord of progress continued in Mattias Wilhelm’s talk. The Humboldt group have a completely orthogonal approach linking integrability to amplitudes. By computing form factors using unitarity, they’ve been able to determine loop-corrections to anomalous dimensions. Sounds technical, I know. But don’t get bogged down! I’ll give you the upshot as a headline – New Link between Methods, Form Factors Say.

Coffee consumed, and it was time to get colorful. You’ll hopefully remember that the quarks holding protons and neutrons together come in three different shades. These aren’t really colors that you can see. But they are internal labels attached to the particles which seem vital for our theory to work!

About 30 years ago, people realised you could split off the color-related information and just deal with the complicated issues of particle momentum. Once you’ve sorted that out, you write down your answer as a sum. Each term involves some color stuff and a momentum piece. Schematically

\displaystyle \textrm{gluon amplitude}=\sum \textrm{color}\times \textrm{kinematics}

What they didn’t realise was that you can shuffle momentum dependence between terms to force the kinematic parts to satisfy the same equations as the color parts! This observation, made back in 2010 by Zvi Bern, John Joseph Carrasco and Henrik Johansson has important consequences for gravity in particular.

Why’s that? Well, if you arrange your Yang-Mills kinematics in the form suggested by those gentlemen then you get gravity amplitudes for free. Merely strip off the color bit and replace it by another copy of the kinematics! In my super-vague language above

\displaystyle \textrm{graviton amplitude}=\sum \textrm{kinematics}\times \textrm{kinematics}

Dr. John Joseph Carrasco himself brought us up to date with a cunning method of determining the relevant kinematic choice at loop level. I can’t help but mention his touching modesty. Even though the whole community refers to the relations by the acronym BCJ, he didn’t do so once!

Before that Dr. Donal O’Connell took us on an intriguing detour of solutions to classical gravity theories with an appropriate dual Yang-Mills theory, obtainable via a BCJ procedure. The idea is beautiful, and seems completely obvious once you’ve been told! Kudos to the authors for thinking of it.

After lunch we enjoyed a well-earned break with a hike up the Uetliberg mountain. I learnt that this large hill is colloquially called Gmuetliberg. Yvonne Geyer helpfully explained that this is derogatory reference to the tame nature of the climb! Nevertheless the scenery was very pleasant, particularly given that we were mere minutes away from the centre of a European city. What I wouldn’t give for an Uetliberg in London!

Evening brought us to Heidi and Tell, a touristic yet tasty burger joint. Eager to offset some of my voracious calorie consumption I took a turn around the Altstadt. If you’re ever in Zurich it’s well worth a look – very little beats medieval streets, Alpine water and live swing music in the evening light.

Conversations

It was fantastic to meet Professor Lionel Mason and discuss various ideas for extending the ambitwistor string formalism to form factors. I also had great fun chatting to Julio Martinez about linking CHY and BCJ. Finally huge thanks to Dr. Angnis Schmidt-May for patiently explaining the latest research in the field of massive gravity. The story is truly fascinating, and could well be a good candidate for a tractable quantum gravity model!

Erratum: An earlier version of this post mistakenly claimed that Chris White spoke about BCJ for equations of motion. Of course, it was his collaborator Donal O’Connell who delivered the talk. Many thanks to JJ Carrasco for pointing out my error!

Advertisements

Conference Amplitudes 2015!

It’s conference season! I’m hanging out in very warm Zurich with the biggest names in my field – scattering amplitudes. Sure it’s good fun to be outside the office. But there’s serious work going on too! Research conferences are a vital forum for the exchange of ideas. Inspiration and collaboration flow far more easily in person than via email or telephone. I’ll be blogging the highlights throughout the week.

Monday | Morning Session

To kick-off we have some real physics from the Large Hadron Collider! Professor Nigel Glover‘s research provides a vital bridge between theory and experiment. Most physicists in this room are almost mathematicians, focussed on developing techniques rather than computing realistic quantities. Yet the motivation for this quest lie with serious experiments, like the LHC.

We’re currently entering an era where the theoretical uncertainty trumps experimental error. With the latest upgrade at CERN, particle smashers will reach unprecedented accuracy. This leaves us amplitudes theorists with a large task. In fact, the experimentalists regularly draw up a wishlist to keep us honest! According to Nigel, the challenge is to make our predictions twice as good within ten years.

At first glance, this 2x challenge doesn’t seem too hard! After all Moore’s Law guarantees us a doubling of computing power in the next few years. But the scale of the problem is so large that more computing power won’t solve it! We need new techniques to get to NNLO – that is, corrections that are multiplied by \alpha_s^2 the square of the strong coupling. (Of course, we must also take into account electroweak effects but we’ll concentrate on the strong force for now).

Nigel helpfully broke down the problem into three components. Firstly we must compute the missing higher order terms in the amplitude. The start of the art is lacking at present! Next we need better control of our input parameters. Finally we need to improve our model of how protons break apart when you smash them together in beams.

My research helps in a small part with the final problem. At present I’m finishing up a paper on subleading soft loop corrections, revealing some new structure and developing a couple of new ideas. The hope is that one day someone will use this to better eliminate some irritating low energy effects which can spoil the theoretical prediction.

In May, I was lucky enough to meet Bell Labs president Dr. Marcus Weldon in Murray Hill, New Jersey. He spoke about his vision for a 10x leap forward in every one of their technologies within a decade. This kind of game changing goal requires lateral thinking and truly new ideas.

We face exactly the same challenge in the world of scattering amplitudes. The fact that we’re aiming for only a 2x improvement is by no means a lack of ambition. Rather it underlines that problem that doubling our predictive power entails far more than a 10x increase in complexity of calculations using current techniques.

I’ve talked a lot about accuracy so far, but notice that I haven’t mentioned precision. Nigel was at pains to distinguish the two, courtesy of this amusing cartoon.

Accuracy Vs Precision

Why is this so important? Well, many people believe that NNLO calculations will reduce the renormalization scale uncertainty in theoretical predictions. This is a big plus point! Many checks on known NNLO results (such as W boson production processes) confirm this hunch. This means the predictions are much more precise. But it doesn’t guarantee accuracy!

To hit the bullseye there’s still much work to be done. This week we’ll be sharpening our mathematical tools, ready to do battle with the complexities of the universe. And with that in mind – it’s time to get back to the next seminar. Stay tuned for further updates!

Update | Monday Evening

View from the Main Building at ETH Zurich

Only time for the briefest of bulletins, following a productive and enjoyable evening on the roof of the ETH main building. Fantastic to chat again to Tomek Lukowski (on ambitwistor strings), Scott Davies (on supergravity 4-loop calculations and soft theorems) and Philipp Haehnal (on the twistor approach to conformal gravity). Equally enlightening to meet many others, not least our gracious hosts from ETH Zurich.

My favourite moment of the day came in Xuan Chen’s seminar, where he discussed a simple yet powerful method to check the numerical stability of precision QCD calculations. It’s well known that these should factorize in appropriate kinematic regions, well described by imaginatively named antenna functions. By painstakingly verifying this factorization in a number of cases Xuan detected and remedied an important inaccuracy in a Higgs to 4 jet result.

Of course it was a pleasure to hear my second supervisor, Professor Gabriele Travaglini speak about his latest papers on the dilatation operator. The rederivation of known integrability results using amplitudes opens up an enticing new avenue for those intrepid explorers who yearn to solve \mathcal{N}=4 super-Yang-Mills!

Finally Dr. Simon Badger‘s update on the Edinburgh group’s work was intriguing. One challenge for NNLO computations is to understand 2-loop corrections in QCD. The team have taken an important step towards this by analysing 5-point scattering of right-handed particles. In principle this is a deterministic procedure: draw some pictures and compute.

But to get a compact formula requires some ingenuity. First you need appropriate integral reduction to identify appropriate master integrals. Then you must apply KK and BCJ relations to weed out the dead wood that’s cluttering up the formula unnecessarily. Trouble is, both of these procedures aren’t uniquely defined – so intelligent guesswork is the order of the day!

That’s quite enough for now – time for some sleep in the balmy temperatures of central Europe.