Black Holes and the Information Paradox: a Solution?

Gravity has a good sense of humour. On the one hand, it’s the weakest force we know. The upward push of your chair is more than enough to counteract the pull of the entire planet! Yet gravity has an ace up its sleeve – unlike all other forces, it’s always attractive. For larger objects, the other forces start bickering and cancelling out. But gravity just keeps on getting stronger, until it’s impossible to escape – a black hole!

As a theoretical physicist, I tend to carry a black hole whenever I’m travelling.

wood and stainless tapered-800x600
My “black hole” bucket.

As you can see, the top of this bucket is the surface of a black hole, otherwise known as the event horizon. When I release water from a glass above the black hole, it is attracted to the black hole, and falls inexorably towards it, never to be seen again. 

This water is doomed!
This water is doomed!

Okay, I suppose my bucket isn’t a real black hole. After all, it’s the gravity of the Earth that pulls the water in. And light can definitely escape because I can see inside it! But it does accurately represent the bending of space and time. Albert Einstein taught us that everything in the universe rolls around on the cosmic quilt of spacetime, like balls on an elastic sheet. A heavy ball distorts the sheet, creating my black hole bucket.

You might not feel too threatened by black holes – after all, the nearest one is probably 8 billion billion miles away. But in actual fact you could be falling into a black hole right now without noticing! Turns out that for a large enough black hole, the event horizon is so far away that gravity there is very weak. So there’s no reason why you should experience anything special.

Maybe we, and all this, have just passed the point of no return...
Maybe we, and all this, have just passed the point of no return…

This disturbing fact has an unexpected consequence from the microscopic world of quantum mechanics. Every quantum theory must have a single vacuum, essentially the most boring and lazy state of affairs. If I stand still the vacuum is just empty space. But as soon as I start accelerating something weird happens. Particles suddenly appear from nowhere!

What does that mean for our black hole? Well if you’re not falling in, you must be accelerating away to oppose the huge pull of gravity! This means that you should see the black hole glowing with particles called Hawking radiation. Remember my black hole full of water? Well, you haven’t fallen in. And that means I have to cover you with Hawking radiation!

It's confetti! Er, I mean Hawking radiation.
It’s confetti! Um, I mean Hawking radiation.

Luckily for your computer, the Hawking confetti that came out isn’t the same as the water that went in. From your perspective the water has simply disappeared! Exactly the same thing seems to happen for real black holes.

This black hole magic trick has become infamous among scientists, resisting all efforts at explanation. But a solution might be at hand, courtesy of Hawking himself! What if you could slightly change the vacuum every time something dropped into the black hole? Then, if you’re very careful, you might just be able to reconstruct the original water from the confetti of Hawking radiation.

Is the event horizon a cosmic hairdresser?
Is the event horizon a cosmic hairdresser?

Put another way, the event horizon takes a lock of soft hair from every passing particle as a memento of its existence. This information is eventually carried off by Hawking’s magic particles, reminding us of what we’d lost. It remains for soft experts, like myself, to work out the exact details.

This post is based on a talk given for the Famelab competition. You can read the full paper by Stephen Hawking, Malcolm Perry and Andy Strominger here.

Collabor8 – A New Type of Conference

Next month, I’m running a day-long conference here at QMUL. The meeting is intended to give early career researchers the chance to seek possible collaborations. Despite living in this globalised age, all too often PhD students and postdocs are restricted to working with faculty members in their current institution. This is no surprise – at the conferences and meetings where networking opportunities arise, we’re usually talking about completed work, rather than discussing new problems.

We’re shaking up the status quo by asking our participants to speak about ongoing research, and in particular to outline roadblocks where they need input from theorists with different expertise. What’s more, we’re throwing together random teams for speed collaboration sessions on the issues presented, getting the ball rolling for possible acknowledgements and group projects. We’re extremely fortunate to have the inspirational Fernando Alday as our guest speaker, a serial collaborator himself.

The final novelty of this conference comes in digital form. The conference website doubles as a social network, making it easy to keep track of your connections and maintain interactions after the meeting. We hope to generate good content on the site during the day, where some participants will be invited to act as scribes and note down any interesting ideas that arise. This way, there’ll be a valuable and evolving database of ideas ready for future collaborations to draw on.

Over to you! If you’re doing a PhD or a postdoc in the UK, or you know someone who is, send them a link to the website

http://www.collabor8research.org

If you’re further afield, feel free to follow developments from afar. In the long term we’re hoping to roll out the social network to other conferences and institutions – watch this space!

Tidbits from the High Table of Physics

This evening, I was lucky enough to dine with Brenda Penante, Stephane Launois, Lionel Mason, Nima Arkani-Hamed, Tom Lenagan and David Hernandez. Here for your delectation are some tidbits from the conversation.

  • The power of the renormalisation group comes from the fact that the $1$-loop leading logarithm suffices to fix the leading logarithm at all loops. Here’s a reference.
  • The BPHZ renormalisation scheme (widely seen in the physics community as superseded by the Wilsonian renormalisation group) has a fascinating Hopf algebra structure.
  • The central irony of QFT is thus. IR divergences were discovered before UV divergences and “solved” almost instantly. Theorists then wrangled for a couple of decades over the UV divergences, before finally Wilson laid their qualms to rest. At this point the experimentalists came back and told them that it was the IR divergences that were the real problem again. (This remains true today, hence the motivation behind my work on soft theorems).
  • IR divergences are a consequence of the Lorentzian signature. In Euclidean spacetime you have a clean separation of scales, but not so in our world. (Struggling to find a reference for this, anybody know of one?)
  • The next big circular collider will probably have a circumference of 100km, reach energies 7 times that of the LHC and cost at least £20 billion.
  • The Fourier transform of any polynomial in cos(x) with roots at \pm (2i+1) / (2n+1) for 1 \leq i \leq n-1 has all positive coefficients. This is equivalent to the no-ghost theorem in string theory, proved by Peter Goddard, and seems to require some highly non-trivial machinery. (Again, does anyone have a reference?)

and finally

  • Never, ever try to copy algebra into Mathematica late at night!

Three Ways with Totally Positive Grassmannians

This week I’m down in Canterbury for a conference focussing on the positive Grassmannian. “What’s that?”, I hear you ask. Roughly speaking, it’s a mysterious geometrical object that seems to crop up all over mathematical physics, from scattering amplitudes to solitons, not to mention quantum groups. More formally we define

\displaystyle \mathrm{Gr}_{k,n} = \{k\mathrm{-planes}\subset \mathbb{C}^n\}

We can view this as the space of k\times n matrices modulo a GL(k) action, which has homogeneous “Plücker” coordinates given by the k \times k minors. Of course, these are not coordinates in the true sense, for they are overcomplete. In particular there exist quadratic Plücker relations between the minors. In principle then, you only need a subset of the homogeneous coordinates to cover the whole Grassmannian.

To get to the positive Grassmannian is easy, you simply enforce that every k \times k minor is positive. Of course, you only need to check this for some subset of the Plücker coordinates, but it’s tricky to determine which ones. In the first talk of the day Lauren Williams showed how you can elegantly extract this information from paths on a graph!

Screen Shot 2016-01-07 at 21.55.04

In fact, this graph encodes much more information than that. In particular, it turns out that the positive Grassmannian naturally decomposes into cells (i.e. things homeomorphic to a closed ball). The graph can be used to exactly determine this cell decomposition.

And that’s not all! The same structure crops up in the study of quantum groups. Very loosely, these are algebraic structures that result from introducing non-commutativity in a controlled way. More formally, if you want to quantise a given integrable system, you’ll typically want to promote the coordinate ring of a Poisson-Lie group to a non-commutative algebra. This is exactly the sort of problem that Drinfeld et al. started studying 30 years ago, and the field is very much active today.

The link with the positive Grassmannian comes from defining a quantity called the quantum Grassmannian. The first step is to invoke a quantum plane, that is a 2-dimensional algebra generated by a,b with the relation that ab = qba for some parameter q different from 1. The matrices that linearly transform this plane are then constrained in their entries for consistency. There’s a natural way to build these up into higher dimensional quantum matrices. The quantum Grassmannian is constructed exactly as above, but with these new-fangled quantum matrices!

The theorem goes that the torus action invariant irreducible varieties in the quantum Grassmannian exactly correspond to the cells of the positive Grassmannian. The proof is fairly involved, but the ideas are rather elegant. I think you’ll agree that the final result is mysterious and intriguing!

And we’re not done there. As I’ve mentioned before, positive Grassmannia and their generalizations turn out to compute scattering amplitudes. Alright, at present this only works for planar \mathcal{N}=4 super-Yang-Mills. Stop press! Maybe it works for non-planar theories as well. In any case, it’s further evidence that Grassmannia are the future.

From a historical point of view, it’s not surprising that Grassmannia are cropping up right now. In fact, you can chronicle revolutions in theoretical physics according to changes in the variables we use. The calculus revolution of Newton and Leibniz is arguably about understanding properly the limiting behaviour of real numbers. With quantum mechanics came the entry of complex numbers into the game. By the 1970s it had become clear that projectivity was important, and twistor theory was born. And the natural step beyond projective space is the Grassmannian. Viva la revolución!